收藏 分享(赏)

广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc

上传人:高**** 文档编号:618259 上传时间:2024-05-29 格式:DOC 页数:19 大小:1.84MB
下载 相关 举报
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第1页
第1页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第2页
第2页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第3页
第3页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第4页
第4页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第5页
第5页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第6页
第6页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第7页
第7页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第8页
第8页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第9页
第9页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第10页
第10页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第11页
第11页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第12页
第12页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第13页
第13页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第14页
第14页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第15页
第15页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第16页
第16页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第17页
第17页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第18页
第18页 / 共19页
广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析).doc_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
资源描述

1、广东省湛江市2020届高三数学下学期模拟考试试题 理(含解析)一、选择题1.已知集合,则( )A. B. C. D. 【答案】B【解析】【分析】分别求出集合和,即可根据交集的运算求出.【详解】,而,.故选:B【点睛】本题主要考查集合的交集运算,以及一元二次不等式的解法,属于容易题.2.设(是虚数单位),则( )A. B. 1C. 2D. 【答案】A【解析】【分析】先利用复数代数形式的四则运算法则求出,即可根据复数的模计算公式求出【详解】,故选:A【点睛】本题主要考查复数代数形式的四则运算法则的应用,以及复数的模计算公式的应用,属于容易题3.已知等差数列的前项和为,则( )A. 25B. 32C

2、. 35D. 40【答案】C【解析】【分析】设出等差数列的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得【详解】设等差数列的首项为,公差为,则,解得,即有故选:C【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前项和公式的应用,属于容易题4.某歌手大赛进行电视直播,比赛现场有名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照,分组,绘成频率分布直方图如下:嘉宾评分嘉宾评分平均数为,场内外的观众评分的平均数为,所有嘉宾与场内外的观众评分的平均

3、数为,则下列选项正确的是( )A. B. C. D. 【答案】C【解析】【分析】计算出、,进而可得出结论【详解】由表格中的数据可知,由频率分布直方图可知,则,由于场外有数万名观众,所以,.故选:B.【点睛】本题考查平均数的大小比较,涉及平均数公式以及频率分布直方图中平均数的计算,考查计算能力,属于基础题.5.已知函数的图象如图所示,则可以为( )A. B. C. D. 【答案】A【解析】【分析】根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点

4、个数进行判断, 在上无零点, 不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断, 在上单调递减, 不符合题意,排除C.故选:A【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题6.若两个非零向量、满足,且,则与夹角的余弦值为( )A. B. C. D. 【答案】A【解析】【分析】设平面向量与的夹角为,由已知条件得出,在等式两边平方,利用平面向量数量积的运算律可求得的值,即为所求.【详解】设平面向量与的夹角为,可得,在等式两边平方得,化简得.故选:A.【点睛】本题考查利用平面向量的模求夹角的余弦值,考查平面向量数量积的运算性质的应用,考

5、查计算能力,属于中等题.7.已知为等比数列,则( )A. 9B. 9C. D. 【答案】C【解析】【分析】根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】,又,可解得或设等比数列的公比为,则当时, ;当时, ,.故选:C【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.8.已知、分别是双曲线的左、右焦点,过作双曲线的一条渐近线的垂线,分别交两条渐近线于点、,过点作轴的垂线,垂足恰为,则双曲线的离心率为( )A. B. C. D. 【答案】B【解析】【分析】设点位于第二象限,可求得点的坐标,再由直线与直线垂直,转化为两直

6、线斜率之积为可得出的值,进而可求得双曲线的离心率.【详解】设点位于第二象限,由于轴,则点的横坐标为,纵坐标为,即点,由题意可知,直线与直线垂直,因此,双曲线的离心率为.故选:B.【点睛】本题考查双曲线离心率的计算,解答的关键就是得出、的等量关系,考查计算能力,属于中等题.9.已知,则( )A. B. C. D. 【答案】D【解析】【分析】先根据选项中出现的式子,由对数函数的单调性求出其大致范围, 再利用对数的运算性质和换底公式化简,即可得出三个式子的大小关系.【详解】,即,即,即,即有.,即,.综上, .故选:D【点睛】本题主要考查对数的运算性质, 换底公式以及对数函数的单调性的应用,意在考查

7、学生的数学运算能力和逻辑推理能力,属于中档题.10.过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )A. B. C. D. 【答案】B【解析】【分析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.11.已知函数(,),将函数的图象向左平移个

8、单位长度,得到函数的部分图象如图所示,则是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】【分析】先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,再由, 取,.将函数的图象向右平移个单位长度,得到函数的图象,.,令,则,显然,是的必要不充分条件.故选:B【点睛】本题主要考查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.三、解答题

9、12.如图,在中,点在线段上.(1)若,求的长;(2)若,求的面积.【答案】(1)(2)【解析】【分析】(1)先根据平方关系求出,再根据正弦定理即可求出;(2)分别在和中,根据正弦定理列出两个等式,两式相除,利用题目条件即可求出,再根据余弦定理求出,即可根据求出的面积【详解】(1)由,得,所以.由正弦定理得,即,得.(2)由正弦定理,在中,在中,又,由得,由余弦定理得,即,解得,所以的面积.【点睛】本题主要考查正余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于基础题13.如图,在四棱柱中,底面为菱形,.(1)证明:平面平面;(2)若,是等边三角形,求二面角

10、的余弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)根据面面垂直的判定定理可知,只需证明平面即可由为菱形可得,连接和与的交点,由等腰三角形性质可得,即能证得平面;(2)由题意知,平面,可建立空间直角坐标系,以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,再分别求出平面的法向量,平面的法向量,即可根据向量法求出二面角的余弦值【详解】(1)如图,设与相交于点,连接,又为菱形,故,为的中点.又,故.又平面,平面,且,故平面,又平面,所以平面平面.(2)由是等边三角形,可得,故平面,所以,两两垂直.如图以为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.不妨设

11、,则,则,设为平面法向量,则即可取,设为平面的法向量,则即可取,所以.所以二面角的余弦值为0.【点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理的应用,以及利用向量法求二面角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于基础题14.某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设

12、备是否符合此要求?若不符合此要求,求出符合要求时,生产一件产品为标准长度的概率的最小值.【答案】(1)(2)【解析】【分析】(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出最小值.【详解】(1)由柱状图,该批次产品长度误差绝对值的频率分布列为下表:00.010.020

13、.030.04频率0.40.30.20.0750.025所以的数学期望的估计为.(2)由(1)可知任取一件产品是标准长度的概率为0.4,设至少有1件是标准长度产品为事件,则,故不符合概率不小于0.8的要求.设生产一件产品为标准长度的概率为,由题意,又,解得,所以符合要求时,生产一件产品为标准长度的概率的最小值为.【点睛】本题主要考查离散型随机变量的期望的求法,相互独立事件同时发生的概率公式的应用,对立事件的概率公式的应用,解题关键是对题意的理解,意在考查学生的数学建模能力和数学运算能力,属于基础题15.已知椭圆经过点,离心率为.(1)求椭圆的方程;(2)过点的直线交椭圆于、两点,若,在线段上取

14、点,使,求证:点在定直线上.【答案】(1);(2)见解析.【解析】【分析】(1)根据题意得出关于、的方程组,解出、的值,进而可得出椭圆的标准方程;(2)设点、,设直线的方程为,将该直线的方程与椭圆的方程联立,并列出韦达定理,由向量的坐标运算可求得点的坐标表达式,并代入韦达定理,消去,可得出点的横坐标,进而可得出结论.【详解】(1)由题意得,解得,.所以椭圆的方程是;(2)设直线的方程为,、,由,得.,则有,由,得,由,可得,综上,点在定直线上.【点睛】本题考查椭圆方程的求解,同时也考查了点在定直线上的证明,考查计算能力与推理能力,属于中等题.16.设函数,是函数的导数.(1)若,证明在区间上没

15、有零点;(2)在上恒成立,求的取值范围.【答案】(1)证明见解析(2)【解析】【分析】(1)先利用导数的四则运算法则和导数公式求出,再由函数的导数可知,函数在上单调递增,在上单调递减,而,可知在区间上恒成立,即在区间上没有零点;(2)由题意可将转化为,构造函数,利用导数讨论研究其在上的单调性,由,即可求出的取值范围【详解】(1)若,则,设,则,故函数是奇函数当时,这时,又函数是奇函数,所以当时,.综上,当时,函数单调递增;当时,函数单调递减.又,故在区间上恒成立,所以在区间上没有零点.(2),由,所以恒成立,若,则,设,.故当时,又,所以当时,满足题意;当时,有,与条件矛盾,舍去; 当时,令,

16、则,又,故在区间上有无穷多个零点,设最小的零点为,则当时,因此在上单调递增.,所以于是,当时,得,与条件矛盾.故的取值范围是.【点睛】本题主要考查导数的四则运算法则和导数公式的应用,以及利用导数研究函数的单调性和最值,涉及分类讨论思想和放缩法的应用,难度较大,意在考查学生的数学建模能力,数学运算能力和逻辑推理能力,属于较难题17.在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.

17、【答案】(1),;(2).【解析】【分析】(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.【详解】(1)由(为参数),得,化简得,故直线的普通方程为.由,得,又,.所以的直角坐标方程为;(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,纵坐标不变,横坐标变为原来的倍得到曲线的方程为,所以曲线的参数方程为(为参数).故点到直线的距离为,当时,最小为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同

18、时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.18.已知,函数的最小值为.(1)求证:;(2)若恒成立,求实数的最大值.【答案】(1)见解析;(2)最大值为.【解析】【分析】(1)将函数表示为分段函数,利用函数的单调性求出该函数的最小值,进而可证得结论成立;(2)由可得出,并将代数式与相乘,展开后利用基本不等式可求得的最小值,进而可得出实数的最大值.【详解】(1).当时,函数单调递减,则;当时,函数单调递增,则;当时,函数单调递增,则.综上所述,所以;(2)因为恒成立,且,所以恒成立,即.因为,当且仅当时等号成立,所以,实数的最大值为.【点睛】本题考查含绝对值函数最值的求解,同时也考查了利用基本不等式恒成立求参数,考查推理能力与计算能力,属于中等题.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3