1、文科高考数学必背知识点:公式一、高中数学诱导公式全集:常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(&p
2、i;+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π
3、-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±&alpha
4、;及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+&
5、alpha;)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。诱导公式记忆口诀规律总结上面这些诱导公式可以概括为:
6、对于π/2*k ±α(k∈Z)的三角函数值,当k是偶数时,得到α的同名函数值,即函数名不改变;当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。当α是锐角时,2π-α∈(27
7、0°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意
8、思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦还有一种按照函数类型分象限定正负:函数类型 第一象限 第二象限 第三象限 第四象限正弦 .+.+.余弦 .+.+.正切 .+.+.余切 .+.+.同角三角函数基本关系同角三角函数的基本关系式倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·s
9、ecα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα平方关系:sin2(α)+cos2(α)=11+tan2(α)=sec2(α)1+cot2(α)=csc2(α)同角三角函数关系六角形记忆法六角形记忆法:(参看图片或参考资料链接)构造以上弦、中切、下割;左正、右余、中间1的正六边形为模型。(1)倒数关系:对角线上两个函数互为倒数
10、;(2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。(3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。两角和差公式两角和与差的三角函数公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcos&bet
11、a;-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtan(α+β)=(tanα+tanβ)/(1-tanαtanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式二倍角的正弦、余弦和正切公式(升幂缩角公式)sin2α=2sinαcosαcos2α=cos2(&a
12、lpha;)-sin2(α)=2cos2(α)-1=1-2sin2(α)tan2α=2tanα/1-tan2(α)半角公式半角的正弦、余弦和正切公式(降幂扩角公式)sin2(α/2)=(1-cosα)/2cos2(α/2)=(1+cosα)/2tan2(α/2)=(1-cosα)/(1+cosα)另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)万能公式
13、万能公式sinα=2tan(α/2)/1+tan2(α/2)cosα=1-tan2(α/2)/1+tan2(α/2)tanα=2tan(α/2)/1-tan2(α/2)万能公式推导附推导:sin2α=2sinαcosα=2sinαcosα/(cos2(α)+sin2(α).*,(因为cos2(α)+sin2(α)=1)再把*分式上下同除cos2(α),可得sin2&al
14、pha;=2tanα/(1+tan2(α)然后用α/2代替α即可。同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。三倍角公式三倍角的正弦、余弦和正切公式sin3α=3sinα-4sin3(α)cos3α=4cos3(α)-3cosαtan3α=3tanα-tan3(α)/1-3tan2(α)三倍角公式推导附推导:tan3α=sin3α/cos3α=(sin2αcos&
15、alpha;+cos2αsinα)/(cos2αcosα-sin2αsinα)=(2sinαcos2(α)+cos2(α)sinα-sin3(α)/(cos3(α)-cosαsin2(α)-2sin2(α)cosα)上下同除以cos3(α),得:tan3α=(3tanα-tan3(α)/(1-3tan2(α)sin3α=sin(2&a
16、lpha;+α)=sin2αcosα+cos2αsinα=2sinαcos2(α)+(1-2sin2(α)sinα=2sinα-2sin3(α)+sinα-2sin3(α)=3sinα-4sin3(α)cos3α=cos(2α+α)=cos2αcosα-sin2αsinα=(2cos2(α)-1)cosα-2c
17、osαsin2(α)=2cos3(α)-cosα+(2cosα-2cos3(α)=4cos3(α)-3cosα即sin3α=3sinα-4sin3(α)cos3α=4cos3(α)-3cosα三倍角公式联想记忆记忆方法:谐音、联想正弦三倍角:3元 减 4元3角(欠债了(被减成负数),所以要“挣钱”(音似“正弦”)余弦三倍角:4元3角 减 3元(减完之后还有“余”)注意函数名,即正弦的三倍角都用正弦表示,余弦的三倍角都用余弦表示。
18、另外的记忆方法:正弦三倍角: 山无司令 (谐音为 三无四立) 三指的是3倍sinα, 无指的是减号, 四指的是4倍, 立指的是sinα立方余弦三倍角: 司令无山 与上同理和差化积公式三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/
19、2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2积化和差公式三角函数的积化和差公式sinα ·cosβ=0.5sin(α+β)+sin(α-β)cosα ·sinβ=0.5sin(α+β)-sin(α-β)cosα ·cosβ=0.5cos(&a
20、lpha;+β)+cos(α-β)sinα ·sinβ=-0.5cos(α+β)-cos(α-β)和差化积公式推导附推导:首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb所以,sina*cosb=(sin(a+b)+sin(a-b)/2同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b)/2同样的,我
21、们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b)/2同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b)/2这样,我们就得到了积化和差的四个公式:sina*cosb=(sin(a+b)+sin(a-b)/2cosa*sinb=(sin(a+b)-sin(a-b)/2cosa*cosb=(cos(a+b)+cos(a-b)/2sina*
22、sinb=-(cos(a+b)-cos(a-b)/2好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和差化积的四个公式.我们把上述四个公式中的a+b设为x,a-b设为y,那么a=(x+y)/2,b=(x-y)/2把a,b分别用x,y表示就可以得到和差化积的四个公式:sinx+siny=2sin(x+y)/2)*cos(x-y)/2)sinx-siny=2cos(x+y)/2)*sin(x-y)/2)cosx+cosy=2cos(x+y)/2)*cos(x-y)/2)其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?
23、尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。cosx-cosy=-2sin(x+y)/2)*sin(x-y)/2)