1、第4节 宇宙航行 知识点一 人造地球卫星 1.据报道,2018 年 12 月 22 日,我国在酒泉卫星发射中心成功发射了“虹云工程技术验证卫星”,卫星环绕地球运动的周期约为 1.8 h与月球相比,该卫星的()A角速度更小 B环绕速度更小 C向心加速度更大 D离地球表面的高度更大 2如图,若两颗人造卫星 a 和 b 均绕地球做匀速圆周运动,a、b 到地心 O 的距离分别为r1、r2,线速度大小分别为 v1、v2.则()A.v1v2r2r1 B.v1v2r1r2 C.v1v2r2r12 D.v1v2r1r22 3(多选)可以发射一颗这样的人造卫星,使其圆轨道()A与地球表面上某一纬线(非赤道)是共
2、面的同心圆 B与地球表面上某一经线所决定的圆是共面的同心圆 C与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的 D与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的 4如图所示,是同一轨道平面内的三颗人造地球卫星,下列说法正确的是()A根据 v gr,可知 vAvBFBFC C角速度 A B C D向心加速度 aAaBaC 知识点二 宇宙速度 5.关于地球的第一宇宙速度,下列表述正确的是()A第一宇宙速度又叫环绕速度 B第一宇宙速度又叫脱离速度 C第一宇宙速度跟地球的质量无关 D第一宇宙速度跟地球的半径无关 6三颗人造地球卫星 A、B、C 在同一平面内沿不同的轨道绕地球做
3、匀速圆周运动,且绕行方向相同,已知 RARBv2v3 Bv1v2a2a3 Da1a3a2 8已知某星球的平均密度是地球的 n 倍,半径是地球的 k 倍,地球的第一宇宙速度为 v,则该星球的第一宇宙速度为()A.nkv Bk nv Cnk kv D.nkv 关键能力综合练 进阶训练第二层 一、单选题 1已知地球的质量约为火星质量的 10 倍,地球的半径约为火星半径的 2 倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A3.5 km/s B5.0 km/s C17.7 km/s D35.2 km/s 2某科幻电影中讲述了人类想方设法让地球脱离太阳系的故事地球流浪途中在接近木星时被木星
4、吸引,当地球快要撞击木星的危险时刻,点燃木星产生强大气流推开地球拯救了地球若逃逸前,地球、木星沿各自的椭圆轨道绕太阳运行,且航天器在地球表面的重力为G1,在木星表面的重力为 G2;地球与木星均可视为球体,其半径分别为 R1、R2,则下列说法正确的是()A地球逃逸前,发射的航天器逃出太阳系的最小速度为 11.2 km/s B木星与地球的第一宇宙速度之比为 G2R1G1R2 C地球与木星绕太阳公转周期之比的三次方等于它们轨道半长轴之比的二次方 D地球与木星的质量之比为G1R21G2R22 3星球上的物体脱离星球引力所需要的最小速度称为该星球的第二宇宙速度,星球的第二宇宙速度 v2与第一宇宙速度 v
5、1的关系是 v2 2v1.已知某星球的半径为 r,它表面的重力加速度为地球表面重力加速度 g 的16,不计其他星球的影响,则该星球的第二宇宙速度为()A.gr B.gr6 C.gr3 D.13gr 4为了测量某行星的质量和半径,航天员记录了登陆舱在该行星表面做匀速圆周运动的周期 T,登陆舱在行星表面着陆后,用弹簧测力计称量一个质量为 m 的砝码读数为 N.已知引力常量为 G.则下列计算中错误的是()A该行星的质量为N3T4164Gm3 B该行星的半径为42NT2m C该行星的平均密度为3GT2 D该行星的第一宇宙速度为 NT2m 5航天员在月球上做自由落体实验,将某物体由距离月球表面高 h 处
6、释放,经时间 t 落到月球表面(设月球半径为 R)据上述信息推断,飞船在月球表面附近绕月球做匀速圆周运动所必须具有的速率为()A.2 Rht B.2Rht C.Rht D.Rh2t 6行星 A 和 B 都是均匀球体,其质量之比是 13,半径之比是 13,它们分别有卫星 a、b,轨道接近对应行星表面,则两颗卫星 a 和 b 的周期之比为()A127 B19 C13 D31 二、多选题 7已知火星的质量为地球质量的1a,火星的半径为地球半径的1b,假设空气的阻力可忽略不计在火星表面上方 h 处自由释放一物体,物体落在火星表面时的速度为 v1,自释放到着地的时间为 t1;在地球表面上方同样的高度处自
7、由释放一物体,物体落在地面时的速度为 v2,自释放到着地的时间为 t2.则下列说法正确的是()A火星表面的重力加速度与地球表面的重力加速度之比为 ba B火星的第一宇宙速度与地球的第一宇宙速度之比为 b a Ct1t2ab Dv1v2b a 8在未来的“星际穿越”中,某航天员降落在一颗不知名的行星表面上该航天员从高hL 处以初速度 v0水平抛出一个小球,小球落到星球表面时,与抛出点的距离是 5L,已知该星球的半径为 R,引力常量为 G,则下列说法正确的是()A该星球的质量 Mv20R22GL B该星球的质量 M2v20R5GL C该星球的第一宇宙速度 vv0 R2L D该星球的第一宇宙速度 v
8、v0RL 9火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆已知火卫一的周期为 7 h 39 min,火卫二的周期为 30 h 18 min,则两颗卫星相比()A火卫一距火星表面较近 B火卫二的角速度较大 C火卫一的运行速度较大 D火卫二的向心加速度较大 三、计算题 10一航天员站在某质量分布均匀的星球表面上沿竖直方向以初速度 v0 抛出一个小球,测得小球经时间 t 落回抛出点,已知该星球半径为 R,引力常量为 G,求:(1)该星球表面的重力加速度;(2)该星球的密度;(3)该星球的第一宇宙速度 学科素养升级练 进阶训练第三层 1如图所示,在火星与木星轨道之间有一小行星带假设该行星带中
9、的小行星只受到太阳的引力,并绕太阳做匀速圆周运动下列说法正确的是()A太阳对各小行星的引力相同 B各小行星绕太阳运动的周期均小于一年 C小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度 D小行星带内各小行星圆周运动的线速度大于地球公转的线速度 2(多选)P1、P2 为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星 s1、s2 做匀速圆周运动,图中纵坐标表示行星对周围空间各处物体的引力产生的加速度 a,横坐标表示物体到行星中心的距离 r 的平方,两条曲线分别表示 P1、P2周围的 a 与 r2的反比关系,它们左端点横坐标相同,则()AP1的平均密度比 P2的大 BP1的第一宇宙速度
10、比 P2的小 Cs1的向心加速度比 s2的大 Ds1的公转周期比 s2的大 3设一天的时间为 T,地面上的重力加速度为 g,地球半径为 R0.(1)试求地球同步卫星 P 的轨道半径 RP;(2)赤道城市 A 的居民整天可看见城市上空挂着同步卫星 P.设 P 的运动方向突然偏北转过 45,试分析判断当地居民一天内有多少次机会可看到P 掠过城市上空 取消问中的偏转,设 P 从原来的运动方向突然偏西北转过 105,再分析判断当地居民一天内有多少次机会可看到 P 掠过城市上空(3)另一个赤道城市 B 的居民,平均每三天有四次机会可看到某卫星 Q 自东向西掠过该城市上空,试求 Q 的轨道半径 RQ.第
11、4 节 宇宙航行 必备知识基础练 1答案:C 解析:由 GMmr2mv2rm2rm42T2 r 可知,只有 C 正确 2答案:A 解析:由题意知,两颗人造卫星绕地球做匀速圆周运动,万有引力提供向心力,根据 GMmr2mv2r,得 vGMr,所以v1v2r2r1,故 A 正确,B、C、D 错误 3答案:CD 解析:人造卫星飞行时,由于地球对卫星的引力是它做圆周运动的向心力,而这个力的方向必定指向圆心,即指向地心,也就是说人造卫星所在轨道圆的圆心一定要和地球的中心重合,不可能是地轴上(除地心外)的某一点,故 A 项错误;由于地球同时绕着地轴在自转,所以卫星的轨道平面也不可能和经线所决定的平面共面,
12、所以 B 项错误;相对地球表面静止的就是同步卫星,它必须在赤道线平面内,且距地面有确定的高度,这个高度约为 36 000 km,而低于或高于这个轨道的卫星也可以在赤道平面内运动,不过由于它们运动的周期和地球自转周期不同,所以相对于地面是运动的,C、D 两项正确 4答案:C 解析:由图示可知,卫星轨道半径间的关系为:rArBrc;A.卫星绕地球做圆周运动万有引力提供向心力,由牛顿第二定律得:GMmr2mv2r,解得:vGMr,由于:rArBvBvC,故 A 错误;B.万有引力提供向心力,FGMmr2,由于不知道卫星间的质量关系,无法判断引力间的关系,故 B 错误;C.卫星绕地球做圆周运动万有引力
13、提供向心力,由牛顿第二定律得:GMmr2m2r,解得:GMr3,由于:rArBBC,故 C 正确;D.卫星绕地球做圆周运动万有引力提供向心力,由牛顿第二定律得:GMmr2ma,解得:aGMr2,由于:rArBaBaC,故 D 错误;故选 C.5答案:A 解析:第一宇宙速度又叫环绕速度,故 A 对,B 错;根据 GMmR2mv2R可知,v 与地球的质量和半径均有关,故选项 C、D 错 6答案:C 解析:由 GMmr2m(2T)2r 可得,人造地球卫星环绕地球做匀速圆周运动的周期 T2 r3GM可见,T r3,r 越大,T 越大所以再经过卫星 A 的四分之一周期时,卫星 A 的位置恰好到了图中地球
14、的下方,转过的角度 ABC,B、C 位置一定不在同一条直线上,所以C 正确 7答案:D 解析:地球同步卫星的运动周期与地球自转周期相同,即 e 和 q 的运动周期相同,角速度相同,根据关系式 vr 和 a2r 可知,v1v3,a1a3,p 和 q 都围绕地球转动,它们受到的地球的引力提供向心力即 GMmr2mv2r ma 向,可得 v Gmr,a 向GMr2,可见,轨道半径大的线速度和向心加速度均小,即 v3v2,a3a2,所以 v1v3v2,a1a3a2,选项 A、B、C 错误D 正确 8答案:B 解析:由 GMmr2mv2r,得 vGMr 将 M43r3,代入可得 v r,所以该星球的第一
15、宇宙速度是地球第一宇宙速度的 k n倍,本题答案为 B.关键能力综合练 1答案:A 解析:设航天器的质量为 m,地球的质量为 M1,半径为 R1,火星的质量为 M2,半径为 R2,航天器在它们表面附近绕地球和火星运动的速率分别为 v1、v1,其向心力分别由地球和火星对航天器的万有引力提供,根据牛顿第二定律和万有引力定律有 GM1mR21 mv21R1,GM2mR22 mv21R2,解得v1v1 M2M1R1R2 55,在地球表面附近绕地球做圆周运动的速度为第一宇宙速度,即 v17.9 km/s,解得航天器在火星表面附近绕火星做匀速圆周运动的速率约为 v1 55 v13.5 km/s,故 A 正
16、确 2答案:D 解析:在地面附近发射飞行器,如果要使其挣脱太阳引力的束缚,飞到太阳系外,必须使它的速度等于或大于 16.7 km/s,故 A 错误;根据重力提供向心力得 G1mv21R1,解得:地球上的第一宇宙速度 v1 G1R1m,同理得:木星上的第一宇宙速度:v1G2R2m,故木星与地球的第一宇宙速度之比v1v1 G2R2G1R1,故 B 错误;根据开普勒第三定律得:a31T21a32T22,故a1a23T1T22,即地球与木星绕太阳公转周期之比的二次方等于它们轨道半长轴之比的三次方,故 C错误;根据重力与万有引力相等,G1GM地mR21,解得:M 地G1R21Gm,同理可得木星质量:M
17、木G2R22Gm,故M地M木G1R21G2R22,故 D 正确 3答案:C 解析:设地球的质量为 M,半径为 R,近地飞行的卫星质量为 m,由万有引力提供向心力:GMmR2 mv2R 在地球表面有GMmR2 mg 联立式得 v gR 利用类比的关系知该星球第一宇宙速度为 v1gr6 第二宇宙速度 v2与第一宇宙速度 v1的关系是 v2 2v1 即 v2gr3.4答案:B 解析:用弹簧测力计称量一个质量为 m 的砝码读数为 N,gNmGMr2,登陆舱在该行星表面做匀速圆周运动的周期为 T,GMmr2mr2T2,解以上两式得,r NT24m2,MN3T4164Gm3,行星的平均密度 MVM43r3
18、3GT2,该行星的第一宇宙速度为 vGMr NT2m.故选项 B 符合题意,选项 A、C、D 不符合题意 5答案:B 解析:由 h12gt2得 g2ht2,根据 mgmv2R得 v gR 2Rht,故选项 B 正确 6答案:C 解析:研究卫星绕行星做匀速圆周运动,根据万有引力提供向心力,由 GMmr2m2T2r 得T2 r3GM 在行星表面运动,轨道半径可以认为就是行星的半径,行星 A 和 B 质量之比是 13,半径之比是 13 则TaTbr3aMar3bMb13,故这项 C 正确 7答案:BD 解析:A 错:设火星的质量为 M1,半径为 R1,其表面重力加速度为 g1,地球的质量为 M2,半
19、径为 R2,其表面重力加速度为 g2,则GM1mR21 mg1,GM2mR22 mg2,解得g1g2b2a.B 对:星球的“第一宇宙速度”为 v gR,由以上及题中数据可解得火星的第一宇宙速度与地球的第一宇宙速度之比为 b a.C 错:物体自释放到着地所需的时间为 t2hg,时间与重力加速度的平方根成反比,因此可得 t1t2 ab.D 对:由运动学公式可知,在火星表面下落的物体 v212g1h,在地球表面下落的物体 v222g2h,解得v1v2 ba.8答案:AC 解析:A 对,B 错:抛出点与落地点的水平距离为 x()5L2L22L,所以小球的运动时间 txv02Lv0,故 g2ht2 2L
20、2Lv02v202L,在该星球表面有 mgGMmR2,所以 MgR2G v20R22GL.C 对,D 错:该星球的第一宇宙速度 v gRv0R2L.9答案:AC 解析:根据火星对卫星的万有引力提供卫星运行的向心力,列式求出线速度、角速度、周期和向心加速度的表达式进行讨论 卫星绕火星做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为 m、轨道半径为r、火星质量为 M,有 FFn,FGMmr2,Fnmv2rm2rm2T2rman.因而 GMmr2mv2rm2rm2T2rman.解得 v GMr T2rv 2 r3GM GMr3 anGMr2 由于火卫二周期较大,根据式,其轨道半径较大,再结合式
21、,可知火卫二的运行速度较小、角速度较小、向心加速度较小 10答案:(1)2v0t (2)3v02RGt(3)2v0Rt 解析:(1)裉据竖直上抛运动规律可知,小球运动时间 t2v0g 可得星球表面重力加速度 g2v0t.(2)星球表面的小球所受重力等于星球对小球的万有引力,则有 mgGMmR2 得 MgR2G 2v0R2Gt 因为 V4R33 则有 MV3v02RGt.(3)重力提供向心力,故 mgmv2R 该星球的“第一宇宙速度”v gR 2v0Rt 学科素养升级练 1答案:C 解析:由于各小行星的质量不同,所以太阳对各小行星的引力不同,故 A 错误;根据万有引力提供向心力得 GMmr2m4
22、2rT2,T2 r3GM,离太阳越远,周期越大,所以各小行星绕太阳运动的周期大于地球的公转周期,故 B 错误;根据万有引力提供向心力得 GMmr2ma,aGMr2,所以小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度,故 C 正确;根据万有引力提供向心力得 GMmr2mv2r,得 vGMr,所以小行星带内各小行星做圆周运动的线速度小于地球公转的线速度,故 D 错误 2答案:AC 解析:由题图可知,两行星的球体半径相同,对行星周围空间各处物体来说,万有引力提供向心力,有 GmMr2ma,故可知 P1的质量比 P2的大,即 P1的平均密度比 P2的大,所以选项A 正确;由题图可知,P1表面
23、的重力加速度比 P2的大,由 v gr可知,P1的第一宇宙速度比 P2的大,所以选项 B 错误;对卫星而言,万有引力提供向心力,则 aGMr2,故可知,s1的向心加速度比 s2的大,所以选项 C 正确;根据 GMmr2m42T2 r 可知,s1的公转周期比 s2的小,所以选项 D 错误 3答案:(1)3 gR20T242(2)两次 两次(3)3 9gR20T242 解析:(1)以 M 表示地球的质量,mP表示同步卫星 P 的质量,m 表示地球表面处某一物体的质量,根据万有引力定律和牛顿第二定律,有 GMmR20mg,GMmPR2P mP(2T)2RP 联立得 RP3 gR20T242.(2)当
24、 P 的运动方向偏北转过 45时,如图 1 所示,P 的半径和周期不变从某次 P 掠过城市上空开始计时,经过半天,P 和 A 城居民各自转过半圈相遇再经过半天,各自又转过半圈再次相遇故 A 城居民一天内有两次机会看到 P 掠过城市上空 取消问中的偏转,当 P 从原来的运动方向偏西北转过 105 时,如图 2 所示,P 的半径和周期不变分析同,结论仍为 A 城居民一天内有两次机会看到 P 掠过城市上空(3)地球自西向东转动,当卫星 Q 自东向西转动时,某时刻 Q 掠过 B 城市上空(B、Q 在同一直线上)根据题意可知,经过 t3T4,Q 将再一次掠过 B 城市上空则有(BQ)t2 即(2TB 2TQ)t2 而 TBT,解得 TQ3T 根据万有引力定律和牛顿第二定律,有 GMmQR2Q mQ(2TQ)2RQ 结合GMmR20 mg 得 RQ3 9gR20T242.当卫星 Q 自西向东转动时,经计算知没有符合题意的解,故 RQ3 9gR20T242