收藏 分享(赏)

数学对称问题.doc

上传人:a**** 文档编号:534182 上传时间:2025-12-09 格式:DOC 页数:6 大小:17KB
下载 相关 举报
数学对称问题.doc_第1页
第1页 / 共6页
数学对称问题.doc_第2页
第2页 / 共6页
数学对称问题.doc_第3页
第3页 / 共6页
数学对称问题.doc_第4页
第4页 / 共6页
数学对称问题.doc_第5页
第5页 / 共6页
数学对称问题.doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、数学对称问题对称问题是高中数学的重要内容之一,在高考数学试题中常出现一些构思新颖解法灵活的对称问题,为使对称问题的知识系统化,本文特作以下归纳。一、点关于已知点或已知直线对称点问题1、设点P(x,y)关于点(a,b)对称点为P(x,y),x=2a-x由中点坐标公式可得:y=2b-y2、点P(x,y)关于直线L:Ax+By+C=O的对称点为x=x-(Ax+By+C)P(x,y)则y=y-(AX+BY+C)事实上:PPL及PP的中点在直线L上,可得:Ax+By=-Ax-By-2C解此方程组可得结论。(-)=-1(B0)特别地,点P(x,y)关于1、x轴和y轴的对称点分别为(x,-y)和(-x,y)

2、2、直线x=a和y=a的对标点分别为(2a-x,y)和(x,2a-y)3、直线y=x和y=-x的对称点分别为(y,x)和(-y,-x)例1光线从A(3,4)发出后经过直线x-2y=0反射,再经过y轴反射,反射光线经过点B(1,5),求射入y轴后的反射线所在的直线方程。解:如图,由公式可求得A关于直线x-2y=0的对称点A(5,0),B关于y轴对称点B为(-1,5),直线AB的方程为5x+6y-25=0C(0,)直线BC的方程为:5x-6y+25=0二、曲线关于已知点或已知直线的对称曲线问题求已知曲线F(x,y)=0关于已知点或已知直线的对称曲线方程时,只须将曲线F(x,y)=O上任意一点(x,

3、y)关于已知点或已知直线的对称点的坐标替换方程F(x,y)=0中相应的作称即得,由此我们得出以下结论。1、曲线F(x,y)=0关于点(a,b)的对称曲线的方程是F(2a-x,2b-y)=02、曲线F(x,y)=0关于直线Ax+By+C=0对称的曲线方程是F(x-(Ax+By+C),y-(Ax+By+C)=0特别地,曲线F(x,y)=0关于(1)x轴和y轴对称的曲线方程分别是F(x,-y)和F(-x,y)=0(2)关于直线x=a和y=a对称的曲线方程分别是F(2a-x,y)=0和F(x,2a-y)=0(3)关于直线y=x和y=-x对称的曲线方程分别是F(y,x)=0和F(-y,-x)=0除此以外

4、还有以下两个结论:对函数y=f(x)的图象而言,去掉y轴左边图象,保留y轴右边的图象,并作关于y轴的对称图象得到y=f(|x|)的图象;保留x轴上方图象,将x轴下方图象翻折上去得到y=|f(x)|的图象。例2(全国高考试题)设曲线C的方程是y=x3-x。将C沿x轴y轴正向分别平行移动t,s单位长度后得曲线C1:1)写出曲线C1的方程2)证明曲线C与C1关于点A(,)对称。(1)解知C1的方程为y=(x-t)3-(x-t)+s(2)证明在曲线C上任取一点B(a,b),设B1(a1,b1)是B关于A的对称点,由a=t-a1,b=s-b1,代入C的方程得:s-b1=(t-a1)3-(t-a1)b1=

5、(a1-t)3-(a1-t)+sB1(a1,b1)满足C1的方程B1在曲线C1上,反之易证在曲线C1上的点关于点A的对称点在曲线C上曲线C和C1关于a对称我们用前面的结论来证:点P(x,y)关于A的对称点为P1(t-x,s-y),为了求得C关于A的对称曲线我们将其坐标代入C的方程,得:s-y=(t-x)3-(t-x)y=(x-t)3-(x-t)+s此即为C1的方程,C关于A的对称曲线即为C1。三、曲线本身的对称问题曲线F(x,y)=0为(中心或轴)对称曲线的充要条件是曲线F(x,y)=0上任意一点P(x,y)(关于对称中心或对称轴)的对称点的坐标替换曲线方程中相应的坐标后方程不变。例如抛物线y

6、2=-8x上任一点p(x,y)与x轴即y=0的对称点p(x,-y),其坐标也满足方程y2=-8x,y2=-8x关于x轴对称。例3方程xy2-x2y=2x所表示的曲线:A、关于y轴对称B、关于直线x+y=0对称C、关于原点对称D、关于直线x-y=0对称解:在方程中以-x换x,同时以-y换y得(-x)(-y)2-(-x)2(-y)=-2x,即xy2-x2y=2x方程不变曲线关于原点对称。函数图象本身关于直线和点的对称问题我们有如下几个重要结论:1、函数f(x)定义线为R,a为常数,若对任意xR,均有f(a+x)=f(a-x),则y=f(x)的图象关于x=a对称。这是因为a+x和a-x这两点分别列于

7、a的左右两边并关于a对称,且其函数值相等,说明这两点关于直线x=a对称,由x的任意性可得结论。例如对于f(x)若tR均有f(2+t)=f(2-t)则f(x)图象关于x=2对称。若将条件改为f(1+t)=f(3-t)或f(t)=f(4-t)结论又如何呢?第一式中令t=1+m则得f(2+m)=f(2-m);第二式中令t=2+m,也得f(2+m)=f(2-m),所以仍有同样结论即关于x=2对称,由此我们得出以下的更一般的结论:2、函数f(x)定义域为R,a、b为常数,若对任意xR均有f(a+x)=f(b-x),则其图象关于直线x=对称。我们再来探讨以下问题:若将条件改为f(2+t)=-f(2-t)结

8、论又如何呢?试想如果2改成0的话得f(t)=-f(t)这是奇函数,图象关于(0,0)成中心对称,现在是f(2+t)=-f(2-t)造成了平移,由此我们猜想,图象关于M(2,0)成中心对称。如图,取点A(2+t,f(2+t)其关于M(2,0)的对称点为A(2-x,-f(2+x)-f(2+X)=f(2-x)A的坐标为(2-x,f(2-x)显然在图象上图象关于M(2,0)成中心对称。教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复

9、倾听,在反复倾听中体验、品味。若将条件改为f(x)=-f(4-x)结论一样,推广至一般可得以下重要结论:与当今“教师”一称最接近的“老师”概念,最早也要追溯至宋元时期。金代元好问示侄孙伯安诗云:“伯安入小学,颖悟非凡貌,属句有夙性,说字惊老师。”于是看,宋元时期小学教师被称为“老师”有案可稽。清代称主考官也为“老师”,而一般学堂里的先生则称为“教师”或“教习”。可见,“教师”一说是比较晚的事了。如今体会,“教师”的含义比之“老师”一说,具有资历和学识程度上较低一些的差别。辛亥革命后,教师与其他官员一样依法令任命,故又称“教师”为“教员”。死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。3、f(X)定义域为R,a、b为常数,若对任意xR均有f(a+x)=-f(b-x),则其图象关于点M(,0)成中心对称。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1