1、3.3.1二元一次不等式(组)与平面区域(1) 学习目标 1了解二元一次不等式的几何意义和什么是边界,会用二元一次不等式组表示平面区域;2经历从实际情境中抽象出二元一次不等式组的过程,提高数学建模的能力. 学习过程 一、课前准备复习1:一元二次不等式的定义_二元一次不等式定义_二元一次不等式组的定义_ 复习2:解下列不等式:(1); (2) .二、新课导学 学习探究探究1:一元一次不等式(组)的解集可以表示为数轴上的区间,例如,的解集为 . 那么,在直角坐标系内,二元一次不等式(组)的解集表示什么图形呢?探究2:你能研究:二元一次不等式的解集所表示的图形吗?(怎样分析和定边界?). 平面内所有
2、的点被直线分成三类:第一类:在直线x-y=6上的点;第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点. 结论:在平面直角坐标系中,以二元一次不等式的解为坐标的点都在直线x-y=6的_;反过来,直线x-y=6左上方的点的坐标都满足不等式.因此,在平面直角坐标系中,不等式表示直线x-y=6左上方的平面区域;如图:类似的:二元一次不等式x-y6表示直线x-y=6右下方的区域;如图:直线叫做这两个区域的边界结论:1. 二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2. 不等式中仅或不包括 ;但含“”“”包括 ;
3、典型例题 例1画出不等式表示的平面区域.归纳:画二元一次不等式表示的平面区域常采用“直线定界,特殊点定域”的方法.特殊地,当时,常把原点作为此特殊点.变式:画出不等式表示的平面区域.例2用平面区域表示不等式组的解集归纳:不等式组表示的平面区域是各个不等式所表示的平面点集的交集,因而是各个不等式所表示的平面区域的公共部分.变式1:画出不等式表示的平面区域.变式2:由直线,和围成的三角形区域(包括边界)用不等式可表示为 . 动手试试练1. 不等式表示的区域在直线的 _练2. 画出不等式组表示的平面区域.三、总结提升 学习小结由于对在直线同一侧的所有点(),把它的坐标()代入,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点,从的正负即可判断表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点) 学习评价 当堂检测(时量:5分钟 满分:10分)计分:1. 不等式表示的区域在直线的( ).A右上方 B右下方 C左上方 D左下方2. 不等式表示的区域是( ). 3.不等式组表示的平面区域是( ).4. 已知点和在直线的两侧,则的取值范围是 .5. 画出表示的平面区域为: 课后作业 1. 用平面区域表示不等式组的解集.2. 求不等式组表示平面区域的面积.