1、1.2.2函数的表示法第1课时 函数的表示法思考辨析判断下列说法是否正确,正确的在后面的括号内画“”,错误的画“”.(1)任何一个函数都有三种表示方法.()(2)函数的图象都是连续的、不间断的.()(3)用解析法表示函数一定要写出自变量的取值范围.()答案:(1)(2)(3)探究一探究二探究三思维辨析探究一探究二探究三思维辨析解析:由g(x)的对应表,知g(1)=3,f(g(1)=f(3).由f(x)的对应表,知f(3)=1,f(g(1)=f(3)=1.由g(x)的对应表,知当x=2时,g(2)=2.又g(f(x)=2,f(x)=2.又由f(x)的对应表,知当x=1时,f(1)=2.x=1.答
2、案:11探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究二求函数的解析式【例2】(1)已知f(x+1)=x2-3x+2,求f(x);(2)已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式;(3)已知函数f(x)对于任意的x都有f(x)+2f(-x)=3x-2,求f(x).分析:(1)(方法一)令x+1=t,将x=t-1代入f(x+1)=x2-3x+2可得f(t),即可得f(x);(方法二)由于f(x+1)中x+1的地位与f(x)中x的地位相同,因此还可以将f(x+1)变形为f(x+1)=(x+1)2-5(x+1)+6
3、.(2)设出f(x)=ax2+bx+c(a0),再根据条件列出方程组求出a,b,c的值.(3)将f(x)+2f(-x)=3x-2中的x用-x代替,解关于f(x)与f(-x)的方程组即可探究一探究二探究三思维辨析解:(1)(方法一)令x+1=t,则x=t-1.将x=t-1代入f(x+1)=x2-3x+2,得f(t)=(t-1)2-3(t-1)+2=t2-5t+6,f(x)=x2-5x+6.(方法二)f(x+1)=x2-3x+2=x2+2x+1-5x-5+6=(x+1)2-5(x+1)+6,f(x)=x2-5x+6.(2)设所求的二次函数为f(x)=ax2+bx+c(a0).f(0)=1,c=1,则f(x)=ax2+bx+1.f(x+1)-f(x)=2x对任意的xR都成立,探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究一探究二探究三思维辨析探究三函数的图象及应用【例3】作出下列函数的图象并求其值域:(1)y=1-x(xZ);(2)y=2x2-4x-3(0 x0.答案:y=80 x(x+10),x(0,+)1 2 3 4 5