2012年高考数学(福建)第20题(理)试题优美解 试题(福建、 理20)已知函数 ()若曲线在点处的切线平行于轴,求函数的单调区间;()试确定的取值范围,使得曲线上存在唯一的点,曲线在该点处的切线与曲线只有一个公共点。解析:() 由题意得: 得:函数的单调递增区间为,单调递减区间为()设; 则过切点的切线方程为 令;则 切线与曲线只有一个公共点只有一个根 ,且 (1)当时, 得:当且仅当时, 由的任意性,不符合条件(lby lfx) (2)当时,令 当时, 当且仅当时,在上单调递增 只有一个根 当时,得:,又 存在两个数使, 得:又 存在使,与条件不符。 当时,同理可证,与条件不符 从上得:当时,存在唯一的点使该点处的切线与曲线只有一个公共点试题或解法赏析.本题考查的知识点为导数的理解, 较难的一道好题。考资源网高考资源网