收藏 分享(赏)

2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc

上传人:高**** 文档编号:415272 上传时间:2024-05-27 格式:DOC 页数:8 大小:132KB
下载 相关 举报
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第1页
第1页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第2页
第2页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第3页
第3页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第4页
第4页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第5页
第5页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第6页
第6页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第7页
第7页 / 共8页
2022届高考数学大一轮基础复习之最新省市模拟精编(四十三) 椭 圆 WORD版含解析.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2022精编复习题(四十三) 椭 圆小题对点练点点落实对点练(一)椭圆的定义和标准方程1若直线x2y20经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为()A.y21B.1C.y21或1D以上答案都不对解析:选C直线与坐标轴的交点为(0,1),(2,0),由题意知当焦点在x轴上时,c2,b1,a25,所求椭圆的标准方程为y21.当焦点在y轴上时,b2,c1,a25,所求椭圆的标准方程为1.2已知椭圆C:1,M,N是坐标平面内的两点,且M与C的焦点不重合若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则|AN|BN|()A4B8 C12D16解析:选B设MN的中点为D,椭圆C的左、

2、右焦点分别为F1,F2,如图,连接DF1,DF2,因为F1是MA的中点,D是MN的中点,所以F1D是MAN的中位线,则|DF1|AN|,同理|DF2|BN|,所以|AN|BN|2(|DF1|DF2|),因为D在椭圆上,所以根据椭圆的定义知|DF1|DF2|4,所以|AN|BN|8.3已知三点P(5,2),F1(6,0),F2(6,0),那么以F1,F2为焦点且经过点P的椭圆的短轴长为()A3B6 C9D12解析:选B因为点P(5,2)在椭圆上,所以|PF1|PF2|2a,|PF2|,|PF1|5,所以2a6,即a3,c6,则b3,故椭圆的短轴长为6,故选B.4.如图,已知椭圆C的中心为原点O,

3、F(2,0)为C的左焦点,P为C上一点,满足|OP|OF|,且|PF|4,则椭圆C的方程为()A.1B.1C.1D.1解析:选B设椭圆的标准方程为1(ab0),焦距为2c,右焦点为F,连接PF,如图所示因为F(2,0)为C的左焦点,所以c2.由|OP|OF|OF|知,FPF90,即FPPF.在RtPFF中,由勾股定理,得|PF|8.由椭圆定义,得|PF|PF|2a4812,所以a6,a236,于是b2a2c236(2)216,所以椭圆C的方程为1.5已知点M(,0),椭圆y21与直线yk(x)交于点A,B,则ABM的周长为_解析:M(,0)与F(,0)是椭圆的焦点,则直线AB过椭圆的左焦点F(

4、,0),且|AB|AF|BF|,ABM的周长等于|AB|AM|BM|(|AF|AM|)(|BF|BM|)4a8.答案:86若方程1表示焦点在x轴上的椭圆,则实数a的取值范围是_解析:因为方程1表示焦点在x轴上的椭圆,所以|a|1a30,解得3ab0),以O为圆心,短半轴长为半径作圆O,过椭圆长轴的一端点P作圆O的两条切线,切点分别为A,B,若四边形PAOB为正方形,则椭圆的离心率为()A.B.C.D.解析:选B由题意知|OA|AP|b,|OP|a,OAAP,所以2b2a2,即,故e,故选B.2已知F1,F2为椭圆C:1的左、右焦点,点E是椭圆C上的动点,的最大值、最小值分别为()A9,7B8,

5、7C9,8D17,8解析:选B由题意知F1(1,0),F2(1,0),设E(x,y),则(1x,y),(1x,y),所以x21y2x218x2x27(3x3),所以当x0时,有最小值7;当x3时,有最大值8.故选B.3焦点在x轴上的椭圆方程为1(ab0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为,则该椭圆的离心率为()A.B. C.D.解析:选C短轴的一个端点和两个焦点相连构成一个三角形的面积S2cb(2a2c),整理得a2c,即e.故选C.4已知椭圆E:1(ab0)的右焦点为F,短轴的一个端点为M,直线l:3x4y0交椭圆E于A,B两点若|AF|BF|4,点M到直线

6、l的距离不小于,则椭圆E的离心率的取值范围是()A.B.C.D.解析:选A根据椭圆的对称性及椭圆的定义可得A,B两点到椭圆左、右焦点的距离和为4a2(|AF|BF|)8,所以a2.又d,所以1b2,而e ,所以0e.5已知椭圆1(0bb0),A,B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若|k1k2|,则椭圆的离心率为_解析:设M(x0,y0),则N(x0,y0),|k1k2|,从而e .答案:7已知椭圆y21的左、右焦点分别为F1,F2,以原点为圆心,椭圆的短轴为直径作圆若点P是圆O上的动点,则|PF1|2|PF2|2的值是_解析:由

7、椭圆方程可知a24,b21,c2413,c,a2,b1.F1(,0),F2(,0)圆O的方程为x2y21.设P(x0,y0),则xy1.|PF1|2|PF2|2(x0)2y(x0)2y2(xy)68.答案:88.如图,椭圆的中心在坐标原点O,顶点分别是A1,A2,B1,B2,焦点分别为F1,F2,延长B1F2与A2B2交于P点,若B1PA2为钝角,则此椭圆的离心率的取值范围为_ 解析:设椭圆的方程为1(ab0),B1PA2为钝角可转化为B2A2,F2B1所夹的角为钝角,则(a,b)(c,b)0,即b2ac,则a2c2ac,故210,即e2e10,e或e,又0e1,所以e1.答案:大题综合练迁移

8、贯通1已知椭圆1(ab0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1)若F1AB90,求椭圆的离心率;(2)若2, ,求椭圆的方程解:(1)若F1AB90,则AOF2为等腰直角三角形,所以有OAOF2,即bc.所以ac,e.(2)由题知A(0,b),F1(c,0),F2(c,0),其中c,设B(x,y)由2,得(c,b)2(xc,y),解得x,y,即B.将B点坐标代入1,得1,即1,解得a23c2.又由(c,b),得b2c21,即有a22c21.由解得c21,a23,从而有b22.所以椭圆的方程为1.2设F1,F2分别是椭圆C:1(ab0)的左、右焦

9、点,M是C在第一象限上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|5|F1N|,求a,b.解:(1)根据c及题设知M,由kMNkMF1,得,即2b23ac.将b2a2c2代入,解得,2(舍去)故C的离心率为.(2)由题意,原点O为F1F2的中点,MF2y轴,所以直线MF1与y轴的交点D(0,2)是线段MF1的中点,故4,即b24a.由|MN|5|F1N|,得|DF1|2|F1N|.设N(x1,y1),由题意知y1b0)的左、右焦点,过F1且斜率为1的直线l与E相交于A,B两点,且|AF2|,|AB

10、|,|BF2|成等差数列(1)求E的离心率;(2)设点P(0,1)满足|PA|PB|,求E的方程解:(1)由椭圆定义知|AF2|BF2|AB|4a,又2|AB|AF2|BF2|,得|AB|a,设直线l的方程为yxc,其中c.设A(x1,y1),B(x2,y2),则A,B两点的坐标满足方程组消去y,化简得(a2b2)x22a2cxa2(c2b2)0,则x1x2,x1x2.因为直线AB的斜率为1,所以|AB|x2x1|,即a,故a22b2,所以E的离心率e .(2)设AB的中点为N(x0,y0),由(1)知x0,y0x0c.由|PA|PB|,得kPN1,即1,得c3,从而a3,b3.故椭圆E的方程为1.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3