1、南京市、盐城市2020届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21选做题(在A、B、C三个小题中只能选做2题,每小题10分,计20分请把答案写在答题纸的指定区域内)A.(选修4-2:矩阵与变换)已知圆经矩阵变换后得到圆,求实数的值.B(选修4-4:坐标系与参数方程)在极坐标系中,直线被曲线截得的弦为,当是最长弦时,求实数的值.C(选修4-5:不等式选讲)已知正实数满足,求的最小值. 必做题(第22、23题,每小题10分,计20分请把答案写在答题纸的指定区域内)22(本小题满分10分)如图,、是圆柱的两条母线, 、分别经过上下底面圆的圆心、,是下底面与垂直的直
2、径,.(1)若,求异面直线与所成角的余弦值;(2)若二面角的大小为,求母线的长.23(本小题满分10分)设(),记.(1)求;(2)记,求证:恒成立.附加题答案21.(A)解:设圆上一点,经矩阵变换后得到圆上一点,所以,所以,5分又圆,所以圆的方程为,化简得,所以,解得. 10分21.(B)解:以极点为原点,极轴为x轴的正半轴(单位长度相同)建立平面直角坐标系,由直线,可得直角坐标方程为,又曲线,所以,其直角坐标方程为, 5分所以曲线是以为圆心,为半径的圆,为使直线被曲线(圆)截得的弦最长,所以直线过圆心,于是,解得. 10分21.(C)解:因,所以,由柯西不等式得,即, 5分当且仅当,即时取等号,解得,所以当且仅当时,取最小值36. 10分22解:(1)以,所在直线建立如图所示空间直角坐标系,由,所以,从而,所以,所以异面直线与所成角的余弦值为. 4分(2)设,则,所以,设平面的一个法向量,所以,所以,令,则,所以平面的一个法向量,同理可得平面的一个法向量,因为二面角的大小为,所以,解得或,由图形可知当二面角的大小为时, . 10分注:用传统方法也可,请参照评分.23解:(1)令得,令得,两式相加得,.3分(2)7分要证,即证,只需证明,即证,当时,显然成立;当时,即,对恒成立.综上,恒成立.10分注:用数学归纳法或数列的单调性也可证明恒成立,请参照评分.