收藏 分享(赏)

2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc

上传人:高**** 文档编号:292282 上传时间:2024-05-27 格式:DOC 页数:7 大小:376.50KB
下载 相关 举报
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第1页
第1页 / 共7页
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第2页
第2页 / 共7页
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第3页
第3页 / 共7页
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第4页
第4页 / 共7页
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第5页
第5页 / 共7页
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第6页
第6页 / 共7页
2020-2021学年北师大版数学必修2教师用书:第2章 §3 3-3 空间两点间的距离公式 WORD版含解析.doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网() 您身边的高考专家33空间两点间的距离公式学 习 目 标核 心 素 养1.会推导和应用长方体对角线长公式(重点)2.会推导空间两点间的距离公式(重点)3.能用空间两点间的距离公式处理一些简单的问题(难点)1.通过推导长方体对角线公式及空间两点间的距离公式提升逻辑推理素养.2.通过用两点间的距离公式解简单的问题培养数学运算素养.1长方体的对角线(1)连线长方体两个顶点A,C的线段AC称为长方体的对角线(如图)(2)如果长方体的长、宽、高分别为a,b,c,那么对角线长d.2空间两点间的距离公式(1)空间任意一点P(x0,y0,z0)与原点的距离|OP|.(2)空间两点A(x1,y1,

2、z1),B(x2,y2,z2)间的距离|AB|.思考:空间两点间的距离公式与平面两间点的距离公式的区别与联系?提示:平面两点间的距离公式是空间两点间的距离公式的特例:在平面直角坐标系xOy中,已知两点A(x1,y1),B(x2,y2),则|AB|;在x轴上的两点A,B对应的实数分别是x1,x2,则|AB|x2x1|.1空间直角坐标系中,点A(3,4,0)和点B(2,1,6)的距离是()A2 B2C9D.D|AB|.2在空间直角坐标系中,设A(1,2,a),B(2,3,4),若|AB|,则实数a的值是()A3或5B3或5C3或5D3或5A由题意得|AB|,解得a3或5,故选A.3已知点A(4,5

3、,6),B(5,0,10),在z轴上有一点P,使|PA|PB|,则点P的坐标是_(0,0,6)设点P(0,0,z),则由|PA|PB|,得,解得z6,即点P的坐标是(0,0,6)求空间两点间的距离【例1】已知ABC的三个顶点A(1,5,2),B(2,3,4),C(3,1,5)(1)求ABC中最短边的边长;(2)求AC边上中线的长度解(1)由空间两点间距离公式得|AB|3,|BC|,|AC|,ABC中最短边是|BC|,其长度为.(2)由中点坐标公式得,AC的中点坐标为,AC边上中线的长度为.1求空间两点间的距离问题就是把点的坐标代入距离公式进行计算,其中确定点的坐标或合理设出点的坐标是关键2若所

4、给题目中未建立坐标系,需结合已知条件建立适当的坐标系,再利用空间两点间的距离公式计算1如果点P在z轴上,且满足|PO|1(O是坐标原点),则点P到点A(1,1,1)的距离是_或由题意得P(0,0,1)或P(0,0,1),所以|PA|,或|PA|.求空间点的坐标【例2】已知A(x,5x,2x1),B(1,x2,2x),求|AB|取最小值时A、B两点的坐标,并求此时的|AB|.思路探究解答本题可由空间两点间的距离公式建立关于x的函数,由函数的性质求x,再确定坐标解由空间两点的距离公式得|AB|,当x时,|AB|有最小值.此时A,B.解决这类问题的关键是根据点的坐标的特征,应用空间两点间的距离公式建

5、立已知与未知的关系,结合已知条件确定点的坐标.2在空间直角坐标系中,已知A(3,0,1),B(1,0,3)在y轴上是否存在点M,使MAB为等边三角形?若存在,求出点M的坐标;若不存在,说明理由解假设在y轴上存在点M(0,y,0),使MAB为等边三角形由题意可知y轴上的所有点都能使|MA|MB|成立,所以只要再满足|MA|AB|,就可以使MAB为等边三角形因为|MA|,|AB|2.于是2,解得y.故y轴上存在点M,使MAB为等边三角形,此时点M的坐标为(0,0)或(0,0).空间距离公式的应用【例3】如图,在棱长为1的正方体ABCDA1B1C1D1中,以正方体的三条棱所在直线为轴建立空间直角坐标

6、系Oxyz.(1)若点P在线段BD1上,且满足3|BP|BD1|,试写出点P的坐标,并写出P关于y轴的对称点P的坐标;(2)在线段C1D上找一点M,使得点M到点P的距离最小,求出点M的坐标思路探究(1)借助3|BP|BD1|及平面几何的知识求点P的坐标,利用对称关系求点P的坐标;(2)利用空间两点间的距离公式建立点M到点P的距离的函数,并用函数的思想求其最小值,及此时的点M的坐标解(1)由题意知P的坐标为.P关于y轴的对称点P的坐标为.(2)设线段C1D上一点M的坐标为(0,m,m),则有|MP|,当m时|MP|取到最小值,所以点M为.与平面直角坐标系中类似,在空间直角坐标系中也常常需要设点的

7、坐标,此时,若注意利用点的特殊性,往往能使求解过程简化,如本例(2)设M(0,m,m)便是如此.3如图,在长方体ABCDA1B1C1D1中,ABAD2,AA13,M,N分别是AB,B1C1的中点,点P是DM上的点,DPa,当a为何值时,NP的长最小?解如图,以点D为原点,以DA,DC,DD1所在直线分别为x轴、y轴、z轴,建立空间直角坐标系则D(0,0,0),B1(2,2,3),C1(0,2,3),A(2,0,0),B(2,2,0),M(2,1,0),N(1,2,3),设点P的坐标为(x,y,0),则x2y(0y1)|NP|,所以当y时,|NP|取最小值,此时a,所以当a时,NP的长最小1学会

8、用类比联想的方法理解空间直角坐标系的建系原则,切实体会空间中点的坐标及两点间的距离公式同平面内点的坐标及两点间的距离公式的区别和联系2在导出空间两点间的距离公式的过程中体会转化与化归思想的应用,突出化空间为平面的解题思想1思考辨析(1)空间两点间的距离公式与两点顺序有关()(2)点A(1,1,0)与点B(1,1,1)之间的距离是1.()解析(1),空间两点间的距离公式与两点顺序无关答案(1)(2)2已知点A(1,2,11),B(4,2,3),C(6,1,4),则ABC的形状是()A等腰三角形B等边三角形C直角三角形D等腰直角三角形C由距离公式得:|AB|,|AC|,|BC|,|AC|2|BC|2|AB|2,ABC为直角三角形3已知A(1,2,1),B(2,2,2),点P在z轴上,且|PA|PB|,则点P的坐标为_(0,0,3)P在z轴上,可设P(0,0,z),由|PA|PB|,解得z3.4点A(1,t,0)和点B(1t,2,1)的距离的最小值为_|AB|,当t1时,|AB|的最小值为.- 7 - 版权所有高考资源网

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3