收藏 分享(赏)

江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc

上传人:a**** 文档编号:279549 上传时间:2025-11-22 格式:DOC 页数:9 大小:221KB
下载 相关 举报
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第1页
第1页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第2页
第2页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第3页
第3页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第4页
第4页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第5页
第5页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第6页
第6页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第7页
第7页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第8页
第8页 / 共9页
江苏版2018年高考数学一轮复习专题2.12函数模型及其应用讲.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、专题2.12 函数模型及其应用【考纲解读】内 容要 求备注ABC函数概念与基本初等函数函数模型及其应用对知识的考查要求依次分为了解、理解、掌握三个层次(在表中分别用A、B、C表示).了解:要求对所列知识的含义有最基本的认识,并能解决相关的简单问题.理解:要求对所列知识有较深刻的认识,并能解决有一定综合性的问题.掌握:要求系统地掌握知识的内在联系,并能解决综合性较强的或较为困难的问题.【直击考点】题组一常识题1教材改编 函数模型:y1.002x,y0.25x,ylog2x1.随着x的增大,增长速度的大小关系是_【解析】根据指数函数、幂函数、对数函数的增长速度关系可得2教材改编 某公司市场营销人员

2、的个人月收入与其每月的销售量的关系满足一次函数,已知销售量为1000件时,收入为3000元,销售量为2000件时,收入为5000元,则营销人员没有销售量时的收入是_元【解析】设收入y与销售量x的关系为ykxb,则有30001000kb,50002000kb,解得k2,b1000,所以y2x1000,故没有销售量时的收入y2010001000.3教材改编 某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是_元【解析】设进货价为a元,由题意知132(110%)a10%a,解得a108.题组二常错题4据调查,某自行车存车处在某星期日的存车量为4

3、000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元若普通车存车量为x辆次,存车费总收入为y元,则y关于x的函数关系式是_【解析】y0.2x(4000x)0.30.1x1200(0x4000,xN),这里不能忽略x的取值范围,否则函数解析式失去意义5等腰三角形的周长为20,腰长为x,则其底边长yf(x)_题组三常考题6某市职工收入连续两年持续增加,第一年的增长率为a,第二年的增长率为b,则该市这两年职工收入的年平均增长率为_【解析】设年平均增长率为x,则有(1a)(1b)(1x)2,解得x1.7某食品的保鲜时间y(单位:小时)与储藏温度x (单位:)满足函数关系yek

4、xb(e2.718 28为自然对数的底数,k,b为常数)若该食品在0 的保鲜时间是240小时,在22 的保鲜时间是60小时,则该食品在11的保鲜时间是_小时【解析】由题意, 得于是当x11时,ye11kbe11keb21240120.8要制作一个容积为16 m3,高为1 m的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_【解析】设长方体底面边长分别为x,y,则y,所以容器的总造价为z2(xy)1020xy202016,由基本不等式得,z20201640320480,当且仅当xy4,即底面是边长为4的正方形时,总造价最低【知识清单】1几种

5、常见的函数模型函数模型函数解析式一次函数模型f(x)axb(a,b为常数,a0)二次函数模型f(x)ax2bxc(a,b,c为常数,a0)指数函数模型f(x)baxc(a,b,c为常数,a0且a1,b0)对数函数模型f(x)blogaxc(a,b,c为常数,a0且a1,b0)幂函数模型f(x)axnb(a,b,n为常数,a0,n0)2三种函数模型性质比较yax(a1)ylogax(a1)yxn(n0)在(0,)上的单调性增函数增函数增函数增长速度越来越快越来越慢相对平稳图像的变化随x值增大,图像与y轴接近平行随x值增大,图像与x轴接近平行随n值变化而不同【考点深度剖析】 解答应用问题的程序概括

6、为“四步八字”,即审题:弄清题意,分清条件和结论,理顺数量关系,初步选择模型;建模:把自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;求模:求解数学模型,得出数学结论;还原:将数学结论还原为实际问题的意义【重点难点突破】考点1 一次函数与二次函数模型【1-1】 某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元一个月的本地网内通话时间t(分钟)与电话费s(元)的函数关系如图所示,当通话150分钟时,这两种方式电话费相差_元【答案】10【解析】依题意可设sA(t)20kt,sB(t)mt,又sA(100)sB(100),100k20100

7、m,得km0.2,于是sA(150)sB(150)20150k150m20150(0.2)10,即两种方式电话费相差10元【1-2】将进货单价为80元的商品按90元出售时,能卖出400个若该商品每个涨价1元,其销售量就减少20个,为了赚取最大的利润,售价应定为每个_元【答案】95【思想方法】 (1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;(2)确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;(3)解决函数应用问题时,最后要还原到实际问题【温馨提醒】1易忽视实际问题的自变量的取值范围,需合理确定函数的定义域2注意问题反馈在解决函数模

8、型后,必须验证这个数学结果对实际问题的合理性考点2 分段函数模型【2-1】提高过江大桥的车辆通行能力可改善整个城市的交通状况在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为60千米/小时研究表明:当20x200时,车流速度v是车流密度x的一次函数(1)当0x200时,求函数v(x)的表达式(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)xv(x)可以达到最大,并求出最大值(精确到1辆/小时)

9、【答案】(1) v(x)(2) 当x100时,f(x)在区间(20,200上取得最大值【解析】(1)由题意:当0x20时,v(x)60;【2-2】某公司研制出了一种新产品,试制了一批样品分别在国内和国外上市销售,并且价格根据销售情况不断进行调整,结果40天内全部销完公司对销售及销售利润进行了调研,结果如图所示,其中图(一条折线)、图(一条抛物线段)分别是国外和国内市场的日销售量与上市时间的关系,图是每件样品的销售利润与上市时间的关系(1)分别写出国外市场的日销售量f(t)与上市时间t的关系及国内市场的日销售量g(t)与上市时间t的关系;(2)国外和国内的日销售利润之和有没有可能恰好等于6 30

10、0万元?若有,请说明是上市后的第几天;若没有,请说明理由【答案】(1) f(t) g(t)t26t(0t40) (2) 上市后的第30天【思想方法】(1)实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解(2) 分段函数的最值是各段的最大(最小)者的最大者(最小者)【温馨提醒】构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏考点3 指数函数模型【3-1】一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已

11、知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?【答案】(1) x1 (2) 5(3)15.【3-2】某位股民购进某支股票,在接下来的交易时间内,他的这支股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),判定该股民这支股票的盈亏情况(不考虑其他费用).【答案】略有亏损【解析】设该股民购这支股票的价格为a,则经历n次涨停后的价格为a(110%)na1.1n,经历n次跌停后的价格为a1.1n(110%)na1.1n0.9na(1.10.9)n0.99naa,故该股民这支股票略有亏损【思

12、想方法】(1)指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来解决(2)应用指数函数模型时,关键是对模型的判断,先设定模型,再将已知有关数据代入验证,确定参数,从而确定函数模型(3)ya(1x)n通常利用指数运算与对数函数的性质求解【温馨提醒】解指数不等式时,一定要化为同底,且注意对应函数的单调性【易错试题常警惕】数学实际应用问题,一定要正确理解题意,选择适当的函数模型;合理确定实际问题中自变量的取值范围;必须验证答案对实际问题的合理性如:如图所示,在矩形中,已知,()在、上分别截取、都等于,当为何值时,四边形的面积最大?求出这个最大面积【易错点】忽略实际问题中自变量的取值范围,造成与实际问题不相符合的错误结论【练一练】某村计划建造一个室内面积为的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留宽的通道,沿前侧内墙保留宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?【答案】当矩形温室的边长各为,时,蔬菜的种植面积最大,最大面积是

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1