1、11.3二项分布与正态分布考点一条件概率、相互独立事件及二项分布1.(2018课标文,5,5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7答案B设事件A为“不用现金支付”,事件B为“既用现金支付也用非现金支付”,事件C为“只用现金支付”,则P(A)=1-P(B)-P(C)=1-0.15-0.45=0.4.故选B.2.(2015课标理,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为
2、()A.0.648B.0.432C.0.36D.0.312答案A该同学通过测试的概率P=C320.620.4+0.63=0.432+0.216=0.648,故选A.3.(2014课标理,5,5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.45答案A由条件概率可得所求概率为0.60.75=0.8,故选A.4.(2015广东理,13,5分)已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.答案13解析因为XB(
3、n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=13.5.(2016山东理,19,12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和数学期望EX.解析(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮
4、猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“星队至少猜对3个成语”.由题意,E=ABCD+ABCD+ABCD+ABCD+ABCD,由事件的独立性与互斥性,得P(E)=P(ABCD)+P(ABCD)+P(ABCD)+P(ABCD)+P(ABCD)=P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)=34233423+214233423+34133423=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X可能的取值为0,1,2,
5、3,4,6.由事件的独立性与互斥性,得P(X=0)=14131413=1144,P(X=1)=234131413+14231413=10144=572,P(X=2)=34133413+34131423+14233413+14231423=25144,P(X=3)=34231413+14133423=12144=112,P(X=4)=234233413+34231423=60144=512,P(X=6)=34233423=36144=14.可得随机变量X的分布列为A012346P11445722514411251214所以数学期望EX=01144+1572+225144+3112+4512+61
6、4=236.评析本题考查了随机事件发生的概率及离散型随机变量的分布列与数学期望,确定随机变量可能的取值是解题的关键.属于中档题.6.(2014辽宁理,18,12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解析(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B
7、表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P(A1)=(0.006+0.004+0.002)50=0.6,P(A2)=0.00350=0.15,P(B)=0.60.60.152=0.108.(2)X可能取的值为0,1,2,3,相应的概率为P(X=0)=C30(1-0.6)3=0.064,P(X=1)=C310.6(1-0.6)2=0.288,P(X=2)=C320.62(1-0.6)=0.432,P(X=3)=C330.63=0.216.分布列为X0123P0.0640.2880.4320.216因为XB(3,0.6),所以期望E(X)=30.6
8、=1.8,方差D(X)=30.6(1-0.6)=0.72.7.(2014安徽理,17,12分)甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).解析用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak)=23,P(Bk)=13,k=1,2,3,4,5.(1)P(A)=P(A1A2)+P(B1A2A3)+P(
9、A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)P(A3)P(A4)=232+13232+2313232=5681.所以甲在4局以内(含4局)赢得比赛的概率为5681.(2)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=59,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=29,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B
10、3)P(B4)=1081,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=881.故X的分布列为X2345P59291081881EX=259+329+41081+5881=22481.评析本题考查了独立事件同时发生,互斥事件至少有一个发生、分布列、均值等概率知识;考查应用意识、运算求解能力;准确理解题意是解题的关键;准确运算求解是得分的关键.8.(2014山东理,18,12分)乒乓球台面被球网分隔成甲、乙两部分,如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D,某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C上记3分,在D上记1分,其他
11、情况记0分.对落点在A上的来球,队员小明回球的落点在C上的概率为12,在D上的概率为13;对落点在B上的来球,小明回球的落点在C上的概率为15,在D上的概率为35.假设共有两次来球且落在A,B上各一次,小明的两次回球互不影响.求:(1)小明两次回球的落点中恰有一次的落点在乙上的概率;(2)两次回球结束后,小明得分之和的分布列与数学期望.解析(1)记Ai为事件“小明对落点在A上的来球回球的得分为i分”(i=0,1,3),则P(A3)=12,P(A1)=13,P(A0)=1-12-13=16;记Bi为事件“小明对落点在B上的来球回球的得分为i分”(i=0,1,3),则P(B3)=15,P(B1)=
12、35,P(B0)=1-15-35=15.记D为事件“小明两次回球的落点中恰有1次的落点在乙上”.由题意,D=A3B0+A1B0+A0B1+A0B3,由事件的独立性和互斥性,P(D)=P(A3B0+A1B0+A0B1+A0B3)=P(A3B0)+P(A1B0)+P(A0B1)+P(A0B3)=P(A3)P(B0)+P(A1)P(B0)+P(A0)P(B1)+P(A0)P(B3)=1215+1315+1635+1615=310,所以小明两次回球的落点中恰有1次的落点在乙上的概率为310.(2)由题意,随机变量可能的取值为0,1,2,3,4,6,由事件的独立性和互斥性,得P(=0)=P(A0B0)=
13、1615=130,P(=1)=P(A1B0+A0B1)=P(A1B0)+P(A0B1)=1315+1635=16,P(=2)=P(A1B1)=1335=15,P(=3)=P(A3B0+A0B3)=P(A3B0)+P(A0B3)=1215+1516=215,P(=4)=P(A3B1+A1B3)=P(A3B1)+P(A1B3)=1235+1315=1130,P(=6)=P(A3B3)=1215=110.可得随机变量的分布列为:012346P13016152151130110所以数学期望E=0130+116+215+3215+41130+6110=9130.9.(2014大纲全国理,20,12分)设
14、每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X表示同一工作日需使用设备的人数,求X的数学期望.解析记Ai表示事件:同一工作日乙、丙中恰有i人需使用设备,i=0,1,2,B表示事件:甲需使用设备,C表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.(1)D=A1BC+A2B+A2BC,P(B)=0.6,P(C)=0.4,P(Ai)=C2i0.52,i=0,1,2,(3分)所以P(D)=P(A1BC+A2B+A2BC)=P(A1BC)+P(A2B)+P(A2BC)
15、=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(6分)(2)X的可能取值为0,1,2,3,4,则P(X=0)=P(BA0C)=P(B)P(A0)P(C)=(1-0.6)0.52(1-0.4)=0.06,P(X=1)=P(BA0C+BA0C+BA1C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.60.52(1-0.4)+(1-0.6)0.520.4+(1-0.6)20.52(1-0.4)=0.25,P(X=4)=P(A2BC)=P(A2)P(B)P(C)=0.520.60.4=0.06,P(X=3)=P(D)
16、-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,(10分)数学期望EX=0P(X=0)+1P(X=1)+2P(X=2)+3P(X=3)+4P(X=4)=0.25+20.38+30.25+40.06=2.(12分)10.(2013陕西理,19,12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,
17、因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.解析(1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,则P(A)=C21C32=23,P(B)=C42C53=35.事件A与B相互独立,观众甲选中3号歌手且观众乙未选中3号歌手的概率为P(AB)=P(A)P(B)=P(A)1-P(B)=2325=415.或P(AB)=C21C43C32C53=415(2)设C表示事件“观众丙选中3号歌手”,则P(C)=C42C53=35,X可能的取值为0,1,2,3,且取这些
18、值的概率分别为P(X=0)=P(ABC)=132525=475,P(X=1)=P(ABC)+P(ABC)+P(ABC)=232525+133525+132535=2075,P(X=2)=P(ABC)+P(ABC)+P(ABC)=233525+232535+133535=3375,P(X=3)=P(ABC)=233535=1875,X的分布列为X0123P475207533751875X的数学期望EX=0475+12075+23375+31875=14075=2815.11.(2013大纲全国理,20,15分)甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在
19、下一局当裁判.设各局中双方获胜的概率均为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)用X表示前4局中乙当裁判的次数,求X的分布列和数学期望.解析(1)记A1表示事件“第2局结果为甲胜”,A2表示事件“第3局结果为甲负”,A表示事件“第4局甲当裁判”.则A=A1A2.则P(A)=P(A1A2)=P(A1)P(A2)=14.(2)X的可能取值为0,1,2.记A3表示事件“第3局乙和丙比赛时,结果为乙胜丙”,B1表示事件“第1局结果为乙胜丙”,B2表示事件“第2局乙和甲比赛时,结果为乙胜甲”,B3表示事件“第3局乙参加比赛时,结果为乙负”.则P(X=0)=P(B
20、1B2A3)=P(B1)P(B2)P(A3)=18,P(X=2)=P(B1B3)=14,则P(X=1)=1-P(X=0)-P(X=2)=1-18-14=58.X的分布列为X012P185814E(X)=018+158+214=98.12.(2013福建理,16,13分)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X3的概率;(2)若小明、小
21、红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?解析解法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X3”的事件为A,则事件A的对立事件为“X=5”,因为P(X=5)=2325=415,所以P(A)=1-P(X=5)=1115,即这2人的累计得分X3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X1,都选择方案乙抽奖中奖次数为X2,则这两人选择方案甲抽奖累计得分的数学期望为E(2X1),选择方案乙抽奖累计得分的数学期望为E(3X2).由已知可得,X1B2,23,X2B2,
22、25,所以E(X1)=223=43,E(X2)=225=45,从而E(2X1)=2E(X1)=83,E(3X2)=3E(X2)=125.因为E(2X1)E(3X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.解法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这2人的累计得分X3”的事件为A,则事件A包含有“X=0”“X=2”“X=3”三个两两互斥的事件,因为P(X=0)=1-231-25=15,P(X=2)=231-25=25,P(X=3)=1-2325=215,所以P(A)=P(X=0)+P(X=2)+P(X=3)=1115,即这2
23、人的累计得分X3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X1,都选择方案乙所获得的累计得分为X2,则X1,X2的分布列如下:X1024P194949X2036P9251225425所以E(X1)=019+249+449=83,E(X2)=0925+31225+6425=125.因为E(X1)E(X2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.评析本题主要考查古典概型、离散型随机变量的分布列、数学期望等基础知识,考查数据处理能力、运算求解能力、应用意识.13.(2013辽宁理,19,12分)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解
24、答.(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.解析(1)设事件A=“张同学所取的3道题至少有1道乙类题”,则有A=“张同学所取的3道题都是甲类题”.因为P(A)=C63C103=16,所以P(A)=1-P(A)=56.(6分)(2)X所有的可能取值为0,1,2,3.P(X=0)=C2035025215=4125;P(X=1)=C2135125115+C2035025245=28125;P(X=2)=C22
25、35225015+C2135125145=57125;P(X=3)=C2235225045=36125.所以X的分布列为X0123P4125281255712536125(10分)所以E(X)=04125+128125+257125+336125=2.(12分)14.(2013山东理,19,12分)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以30,31,32胜利的概率;(2)若比赛结果为30或31,则胜利方得3分、对方得0分;若比赛结果为32,则胜利方得2分
26、、对方得1分.求乙队得分X的分布列及数学期望.解析(1)记“甲队以30胜利”为事件A1,“甲队以31胜利”为事件A2,“甲队以32胜利”为事件A3,由题意,各局比赛结果相互独立,故P(A1)=233=827,P(A2)=C322321-2323=827,P(A3)=C422321-23212=427.所以,甲队以30胜利、以31胜利的概率都为827,以32胜利的概率为427.(2)设“乙队以32胜利”为事件A4,由题意,各局比赛结果相互独立,所以P(A4)=C421-2322321-12=427.由题意,随机变量X的所有可能的取值为0,1,2,3.根据事件的互斥性得P(X=0)=P(A1+A2
27、)=P(A1)+P(A2)=1627.又P(X=1)=P(A3)=427,P(X=2)=P(A4)=427,P(X=3)=1-P(X=0)-P(X=1)-P(X=2)=327,故X的分布列为X0123P1627427427327所以EX=01627+1427+2427+3327=79.评析本题考查古典概型、相互独立、互斥、分类讨论思想等基础知识和基本技能,考查逻辑推理能力,运算求解能力,以及运用数学知识分析和解决实际问题的能力.考点二正态分布1.(2012课标理,15,5分)某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用
28、寿命(单位:小时)均服从正态分布N(1000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为.答案38解析由题意知每个电子元件的使用寿命超过1000小时的概率均为12,元件1或元件2正常工作的概率为1-1212=34,所以该部件的使用寿命超过1000小时的概率为1234=38.评析本题考查了正态分布及相互独立事件的概率.2.(2014课标理,18,12分)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表)
29、;(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(,2),其中近似为样本平均数x,2近似为样本方差s2.(i)利用该正态分布,求P(187.8Z212.2);(ii)某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用(i)的结果,求EX.附:15012.2.若ZN(,2),则P(-Z+)=0.6826,P(-2Z+2)=0.9544.解析(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=1700.02+1800.09+1900.22+2000.33+2100.24+2200.08+2300.02=200,s2=(-30)20.02+(-20)20.09+(-10)20.22+00.33+1020.24+2020.08+3020.02=150.(2)(i)由(1)知,ZN(200,150),从而P(187.8Z212.2)=P(200-12.2Z200+12.2)=0.6826.(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826,依题意知XB(100,0.6826),所以EX=1000.6826=68.26.评析本题主要考查了频率分布直方图、正态分布及二项分布等知识,考查学生的识图能力及阅读理解能力,理解和掌握基础知识是解题关键.