收藏 分享(赏)

2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc

上传人:a**** 文档编号:256421 上传时间:2025-11-22 格式:DOC 页数:14 大小:1.40MB
下载 相关 举报
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第1页
第1页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第2页
第2页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第3页
第3页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第4页
第4页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第5页
第5页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第6页
第6页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第7页
第7页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第8页
第8页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第9页
第9页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第10页
第10页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第11页
第11页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第12页
第12页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第13页
第13页 / 共14页
2022年普通高等学校招生全国统一考试模拟(上海卷)数学试题(Word版附答案).doc_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2022年普通高等学校招生全国统一考试模拟 (上海卷)数 学 注意事项:1本场考试时间120分钟,满分150分2作答前,在答题纸正面填写姓名、准考证号,反面填写姓名将核对后的条形码贴在答题纸指定位置.3所有作答务必填涂或书写在答题纸上与试卷题号对应的区城,不得错位在试卷上作答一律不得分4用2B铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题一、填空题(本大题共有12题,满分54分,第16题每题4分,第712题每题5分)考生应在答题纸的相应位置直接填写结果.1已知集合,且,则实数的值是_【解析】因为,所以,当时,无意义,不满足题意;当时,满足题意;当时,不满足题意.综上,实数的值1.2已

2、知复数满足,若和的幅角之差为,则_.【解析】因为,设,所以,由题意可知或,当时, ,当时, ,综上所述:3已知,则_【解析】由已知可得,故.4已知点为正四面体的外接球上的任意一点,正四面体的棱长为2,则的取值范围为_.【解析】如图,将正四面体放在正方体内,并建立如图所示的空间直角坐标系,正四面体的棱长为2,则正方体的棱长为,正四面体ABCD的外接球即为图中正方体的外接球,其半径为R,则,则,设,则,则,.5设且,则的展开式中常数项为_【解析】的通项公式为,的常数项为:.6若函数的反函数的图像经过点,则_.【解析】由于函数的反函数的图象经过点,则,解得,函数,.7已知是抛物线上不同的点,点,若,

3、则_【解析】设,分别过,作抛物线的准线的垂线,垂足分别为,是抛物线上不同的点,点,准线为,.,.8从集合中任取3个不同元素分别作为直线方程中的,则经过坐标原点的不同直线有_条(用数值表示)【解析】依题意,从任取两个不同元素分别作为的值有种,其中重合的直线,按有序数对,有:重合,重合,重合,重合,重合,有:重合,重合,重合,重合,重合,所以经过坐标原点的不同直线条数是.9已知实数m1,实数xy满足不等式组,若目标函数z=x+my的最大值等于10,则m=_.【解析】由约束条件作出可行域如图内的整数点(含边界线上的整数点),联立,解得A(3,3),B(,),化目标函数z=x+my为,由图可知,当直线

4、过B时,直线在y轴上的截距最大,但B不是整数点,因为:0x3,故当y=4,x=2时,z有最大值为2+4m=10,即m=2.10若,且,则的取值范围是_.【解析】由题意,由于,故,即,故,解得:或11平面直角坐标系中,满足到的距离比到的距离大的点的轨迹为曲线,点(其中,)是曲线上的点,原点到直线的距离为,则_.【解析】设曲线上的点为,由题意,则曲线为双曲线的右支,焦点坐标为,双曲线方程为所以渐近线方程为,而点(其中,是曲线上的点,当时,直线的斜率趋近于,即则,即12任意实数a,b,定义,设函数,正项数列是公比大于0的等比数列,且,则=_【解析】由题意,因为时,;当时,;时,所以时,恒成立;因为正

5、项数列是公比大于0的等比数列,且,所以,所以,又,所以;当时,所以,此时无解;设恒成立,在单调递增,当时,所以,解得.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13在数列中,已知,则“”是“是单调递增数列”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【解析】已知,若,即,解得.若数列是单调递增数列,对任意的,即,所以,对任意的恒成立,故,因此,“”是“是单调递增数列”的充要条件.故选:C.14下列不等式恒成立的是()ABCD【解析】对于选项A,()(x+)(x+),而x+2或x+2

6、,令tx+(,22,+),则()(x+)0,所以x+,故A正确;对于选项B,当xy2时,|xy|2,所以|xy|+22,故B错误;对于选项C,因为|xy|(xz)(yz)|xz|+|yz|,故C错误;对于选项D,因为(x+3)+(x1)2x+2+x2222()0,所以D错误故选:A15如图,在棱长为1的正方体中,PQR分别是棱ABBC的中点,以PQR为底面作一个直三棱柱,使其另一个底面的三个顶点也都在正方体的表面上,则这个直三棱柱的体积为()ABCD【解析】如图所示:连接,分别取其中点,连接,则,且,所以几何体是三棱柱,又,且,所以平面,所以,同理,又,所以平面PQR,所以三棱柱是直三棱柱,因

7、为正方体的棱长为1,所以,所以直三棱柱的体积为,故选:C16已知数列满足,则下列选项错误的是()A数列单调递增B数列无界CD【解析】,所以数列单调递增,恒成立,故A,B正确;,所以,所以,故C正确:因为,所以,结合数列单调递增,所以,故D错误,故选:D.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本小题满分14分,第1小题满分6分,第2小题满分8分)如图,直三棱柱中,点D是BC的中点.(1)求三棱锥的体积;(2)求异面直线与所成角的大小.(结果用反三角函数值表示)【解析】(1)由题意得所以三棱锥的体积.即所求三棱锥的体积为.(2)连接,由题

8、意得,且,所以直线与所成的角就是异面直线与所成的角.在中,由余弦定理得,因为,所以.因此所求异面直线与所成角的大小为.18.(本小题满分14分.第1小题满分6分,第2小题满分8分)落户上海的某休闲度假区预计于2022年开工建设.如图,拟在该度假园区入口处修建平面图呈直角三角形的迎宾区,迎宾区的入口设置在点A处,出口在点B处,游客可从入口沿着观景通道A-C-B到达出口,其中米,米,也可以沿便捷通道A-P-B到达出口(P为ABC内一点).(1)若PBC是以P为直角顶点的等腰直角三角形,某游客的步行速度为每分钟50米,则该游客从入口步行至出口,走便捷通道比走观景通道可以快几分钟?(结果精确到1分钟)

9、(2)园区计划将PBC区域修建成室外游乐场,若,该如何设计使室外游乐场的面积最大,请说明理由.【解析】(1)由题设,米,米,在中,由余弦定理得,于是 米.游客可从入口沿着观景通道A-C-B到达出口,所需时间为分钟,游客沿便捷通道A-P-B到达出口所需时间为分钟,所以该游客从入口步行至出口,走便捷通道比走观景通道可以快分钟.(2),设则 ,在中,.由正弦定理得 ,得.所以面积,当时,面积的最大值为平方米.19.(本小题满分14分,第1小题满分6分,第2小题满分8分)有人玩掷硬币走跳棋的游戏,已知硬币出现正反面为等可能性事件,棋盘上标有第0站,第1站,第2站,第100站.一枚棋子开始在第0站,棋手

10、每掷一次硬币,棋子向前跳动一次,若掷出正面,棋向前跳一站(从k到),若掷出反面,棋向前跳两站(从k到),直到棋子跳到第99站(胜利大本营)或跳到第100站(失败集中营)时,该游戏结束.设棋子跳到第n站概率为.(1)求,的值;(2)求证:,其中,并求及的值.【解析】(1)棋子开始在第0站为必然事件,.第一次掷硬币出现正面,棋子跳到第1站,其概率为,.棋子跳到第2站应从如下两方面考虑:前两次掷硬币都出现正面,其概率为;第一次掷硬币出现反面,其概率为.(2)证明:棋子跳到第n()站的情况是下列两种,而且也只有两种:棋子先到第站,又掷出反面,其概率为;棋子先到第站,又掷出正面,其概率为.当时,数列是首

11、项为,公比为的等比数列.,.以上各式相加,得,.,.20.(本小题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分)已知为椭圆C:内一定点,Q为直线l:上一动点,直线PQ与椭圆C交于AB两点(点B位于PQ两点之间),O为坐标原点.(1)当直线PQ的倾斜角为时,求直线OQ的斜率;(2)当AOB的面积为时,求点Q的横坐标;(3)设,试问是否为定值?若是,请求出该定值;若不是,请说明理由.【解析】(1)因为直线PQ的倾斜角为,且,所以直线PQ的方程为:,由,得,所以直线OQ的斜率是;(2)易知直线PQ的斜率存在,设直线PQ的方程为,由,得,设,则,所以,所以,解得,即,所以直线PQ的

12、方程为或,由,得;由,得;(3)易知直线PQ的斜率存在,设直线PQ的方程为,由,得,设,则,所以,因为,所以,所以,.21.(本小题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知函数的定义域为,若存在常数和,对任意的,都有成立,则称函数为“拟线性函数”,其中数组称为函数的拟合系数.(1)数组是否是函数的拟合系数?(2)判断函数是否是“拟线性函数”,并说明理由;(3)若奇函数在区间上单调递增,且的图像关于点成中心对称(其中为常数),证明:是“拟线性函数”.【解析】(1)因为所以当,当时,因为或,所以,所以数组是函数的拟合系数.(2)当时,对于恒成立,所以成立,当时,恒成立,所以成立,由可知,不能同时满足,所以函数不是 “拟线性函数”.(3)的图像关于点成中心对称,令x=0,得:,由于在区间上递增,为奇函数, 时,记,下面证明对一切,都有,为奇函数,即,由于 是周期函数,且一个周期为,因为当时,又因此时,当,由于均为奇函数,也为奇函数,当时,也成立,综合得: 时,,当时,因此,对一切, 都有,即恒成立.所以是“拟线性函数”.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1