收藏 分享(赏)

2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx

上传人:高**** 文档编号:251067 上传时间:2024-05-27 格式:DOCX 页数:17 大小:949.49KB
下载 相关 举报
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第1页
第1页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第2页
第2页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第3页
第3页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第4页
第4页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第5页
第5页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第6页
第6页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第7页
第7页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第8页
第8页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第9页
第9页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第10页
第10页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第11页
第11页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第12页
第12页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第13页
第13页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第14页
第14页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第15页
第15页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第16页
第16页 / 共17页
2016版高考数学大二轮总复习与增分策略(全国通用文科)配套文档:专题六 解析几何 第1讲.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第1讲直线与圆1(2015安徽)直线3x4yb与圆x2y22x2y10相切,则b的值是()A2或12 B2或12 C2或12 D2或122(2015湖南)若直线3x4y50与圆x2y2r2(r0)相交于A,B两点,且AOB120(O为坐标原点),则r_.3(2015重庆)若点P(1,2)在以坐标原点为圆心的圆上,则该圆在点P处的切线方程为_4(2014课标全国)设点M(x0,1),若在圆O:x2y21上存在点N,使得OMN45,则x0的取值范围是_考查重点是直线间的平行和垂直的条件、与距离有关的问题.直线与圆的位置关系(特别是弦长问题),此类问题难度属于中低档,一般以选择题、填空题的形式出现.

2、热点一直线的方程及应用1两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1l2k1k2,l1l2k1k21.若给出的直线方程中存在字母系数,则要考虑斜率是否存在2求直线方程要注意几种直线方程的局限性点斜式、两点式、斜截式要求直线不能与x轴垂直而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线3两个距离公式(1)两平行直线l1:AxByC10,l2:AxByC20间的距离d.(2)点(x0,y0)到直线l:AxByC0的距离公式d.例1(1)已知直线l1:(k3)x(4k)y10与l2:2(k3)x2y30平行,则k的值是()A1或3 B1或5 C3或5

3、 D1或2(2)已知两点A(3,2)和B(1,4)到直线mxy30的距离相等,则m的值为()A0或 B.或6C或 D0或思维升华(1)求解两条直线的平行或垂直问题时要考虑斜率不存在的情况;(2)对解题中可能出现的特殊情况,可用数形结合的方法分析研究跟踪演练1过点M(0,1)作直线,使它被两条直线l1:x3y100,l2:2xy80所截得的线段恰好被M所平分,则此直线方程为_热点二圆的方程及应用1圆的标准方程当圆心为(a,b),半径为r时,其标准方程为(xa)2(yb)2r2,特别地,当圆心在原点时,方程为x2y2r2.2圆的一般方程x2y2DxEyF0,其中D2E24F0,表示以(,)为圆心,

4、为半径的圆例2(1)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为()A(x2)2(y2)23B(x2)2(y)23C(x2)2(y2)24D(x2)2(y)24(2)已知圆M的圆心在x轴上,且圆心在直线l1:x2的右侧,若圆M截直线l1所得的弦长为2,且与直线l2:2xy40相切,则圆M的方程为()A(x1)2y24B(x1)2y24Cx2(y1)24Dx2(y1)24思维升华解决与圆有关的问题一般有两种方法:(1)几何法,通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程;(2)代数法,即用待定系数法先设出圆的方程,再由条件求得各系数跟踪演练2(1)

5、(2015赣州九校联考)经过点A(5,2),B(3,2),且圆心在直线2xy30上的圆的方程为_(2)(2015河北衡水中学三模)已知圆C:(x1)2y225,则过点P(2,1)的圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是()A10 B9C10 D9热点三直线与圆、圆与圆的位置关系1直线与圆的位置关系:相交、相切和相离,判断的方法主要有点线距离法和判别式法(1)点线距离法:设圆心到直线的距离为d,圆的半径为r,则dr直线与圆相离(2)判别式法:设圆C:(xa)2(yb)2r2,直线l:AxByC0,方程组消去y,得关于x的一元二次方程根的判别式,则直线与圆相离0.2圆与圆的位置关系

6、有五种,即内含、内切、相交、外切、外离设圆C1:(xa1)2(yb1)2r,圆C2:(xa2)2(yb2)2r,两圆心之间的距离为d,则圆与圆的五种位置关系的判断方法如下:(1)dr1r2两圆外离;(2)dr1r2两圆外切;(3)|r1r2|dr1r2两圆相交;(4)d|r1r2|(r1r2)两圆内切;(5)0d0)上一动点,PA,PB是圆C:x2y22y0的两条切线,A,B是切点,若四边形PACB的最小面积是2,则k的值为()A3 B.C2 D2思维升华(1)讨论直线与圆及圆与圆的位置关系时,要注意数形结合,充分利用圆的几何性质寻找解题途径,减少运算量(2)圆上的点与圆外点的距离的最值问题,

7、可以转化为圆心到点的距离问题;圆上的点与直线上点的距离的最值问题,可以转化为圆心到直线的距离问题;圆上的点与另一圆上点的距离的最值问题,可以转化为圆心到圆心的距离问题跟踪演练3(1)已知在平面直角坐标系xOy中,圆C的方程为x2y22y3,直线l过点(1,0)且与直线xy10垂直若直线l与圆C交于A、B两点,则OAB的面积为()A1 B.C2 D2(2)两个圆C1:x2y22axa240(aR)与C2:x2y22by1b20(bR)恰有三条公切线,则ab的最小值为()A6 B3 C3 D31已知圆C关于y轴对称,经过点(1,0)且被x轴分成两段弧长比为12,则圆C的方程为()A(x)2y2B(

8、x)2y2Cx2(y)2Dx2(y)22已知点A(2,0),B(0,2),若点C是圆x22axy2a210上的动点,ABC面积的最小值为3,则a的值为()A1 B5 C1或5 D53若圆x2y24与圆x2y2ax2ay90(a0)相交,公共弦的长为2,则a_.提醒:完成作业专题六第1讲二轮专题强化练专题六 第1讲直线与圆A组专题通关1直线l过点(1,2)且与直线2x3y10垂直,则l的方程是()A3x2y10 B3x2y70C2x3y50 D2x3y802若直线ykx2k与圆x2y2mx40至少有一个交点,则m的取值范围是()A0,) B4,)C(4,) D2,43过P(2,0)的直线l被圆(

9、x2)2(y3)29截得的线段长为2时,直线l的斜率为()A B C1 D4(2015肇庆二模)已知圆C的圆心是直线xy10与x轴的交点,且圆C与直线xy30相切,则圆C的方程为()A(x1)2y22B(x1)2y28C(x1)2y22D(x1)2y285已知圆C1:(x2)2(y3)21,圆C2:(x3)2(y4)29,M,N分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|PN|的最小值为()A54 B.1C62 D.6已知点M(a,b)在圆O:x2y21外,则直线axby1与圆O的位置关系是_7(2014湖北)直线l1:yxa和l2:yxb将单位圆C:x2y21分成长度相等的四段弧

10、,则a2b2_.8(2015湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|2.(1)圆C的标准方程为_(2)圆C在点B处的切线在x轴上的截距为_9已知点A(3,3),B(5,2)到直线l的距离相等,且直线l经过两直线l1:3xy10和l2:xy30的交点,求直线l的方程10(2015课标全国)已知过点A(0,1)且斜率为k的直线l与圆C:(x2)2(y3)21交于M,N两点(1)求k的取值范围;(2)若12,其中O为坐标原点,求|MN|.B组能力提高11圆心在曲线y(x0)上,与直线2xy10相切,则面积最小的圆的方程为()A(x2)2(

11、y1)225B(x2)2(y1)25C(x1)2(y2)225D(x1)2(y2)2512已知圆面C:(xa)2y2a21的面积为S,平面区域D:2xy4与圆面C的公共区域的面积大于S,则实数a的取值范围是()A(,2) B(,0)(0,)C(1,1) D(,1)(1,2)13(2015辽宁师范大学附中期中)若圆x2y24x4y100上恰有三个不同的点到直线l:ykx的距离为2,则k_.14已知以点C(t,)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点(1)求证:OAB的面积为定值;(2)设直线y2x4与圆C交于点M,N,若|OM|ON|,求圆C的方程学生用书答案精析专题六解

12、析几何第1讲直线与圆高考真题体验1D圆方程可化为(x1)2(y1)21,该圆是以(1,1)为圆心,以1为半径的圆,直线3x4yb与该圆相切,1,解得b2或b12,故选D.22解析如图,过O点作ODAB于D点,在RtDOB中,DOB60,DBO30,又|OD|1,r2|OD|2.3x2y50解析点P(1,2)在以坐标原点为圆心的圆上,则圆的方程为x2y25,设所求直线为y2k(x1),即kxyk20,圆心到直线的距离d,解得k,直线为xy0,即x2y50.41,1解析如图,过点M作O的切线,切点为N,连接ON.M点的纵坐标为1,MN与O相切于点N.设OMN,则45,即sin ,即.而ON1,OM

13、.M为(x0,1),x1,1x01,x0的取值范围为1,1热点分类突破例1(1)C(2)B解析(1)当k4时,直线l1的斜率不存在,直线l2的斜率存在,则两直线不平行;当k4时,两直线平行的一个必要条件是k3,解得k3或k5.但必须满足(截距不相等)才是充要条件,经检验知满足这个条件(2)依题意,得.所以|3m5|m7|.所以(3m5)2(m7)2,所以8m244m240.所以2m211m60.所以m或m6.跟踪演练1x4y40解析过点M且与x轴垂直的直线是x0,它和直线l1,l2的交点分别中(0,),(0,8),显然不符合题意,故可设所求直线方程为ykx1,其图象与直线l1,l2分别交于A,

14、B两点,则有由解得xA,由解得xB.因为点M平分线段AB,所以xAxB2xM,即0,解得k.故所求的直线方程为yx1,即x4y40.例2(1)D(2)B解析(1)因为圆C经过(1,0),(3,0)两点,所以圆心在直线x2上,又圆与y轴相切,所以半径r2,设圆心坐标为(2,b),则(21)2b24,b23,b,所以选D.(2)由已知,可设圆M的圆心坐标为(a,0),a2,半径为r,得解得满足条件的一组解为所以圆M的方程为(x1)2y24.故选B.跟踪演练2(1)(x2)2(y1)210(2)C解析(1)由题意知KAB2,AB的中点为(4,0),设圆心为C(a,b),圆过A(5,2),B(3,2)

15、两点,圆心一定在线段AB的垂直平分线上则解得C(2,1),r|CA|.所求圆的方程为(x2)2(y1)210.(2)易知最长弦的长为10,PC,则最短弦的长为22,故所求四边形的面积为10210,选C.例3(1)A(2)D解析(1)对于直线方程2x(y3)m40(mR),取y3,则必有x2,所以该直线恒过定点P(2,3)设圆心是C,则易知C(1,2),所以kCP1,由垂径定理知CPMN,所以kMN1.又弦MN过点P(2,3),故弦MN所在直线的方程为y3(x2),即xy50.(2)如图,把圆的方程化成标准形式得x2(y1)21,所以圆心为(0,1),半径为r1,四边形PACB的面积S2SPBC

16、,所以若四边形PACB的最小面积是2,则SPBC的最小值为1.而SPBCr|PB|,即|PB|的最小值为2,此时|PC|最小,|PC|为圆心到直线kxy40的距离d,此时d,即k24,因为k0,所以k2.跟踪演练3(1)A(2)C解析(1)因为圆C的标准方程为x2(y1)24,圆心为C(0,1),半径r2,直线l的斜率为1,其方程为xy10.圆心C到直线l的距离d,弦长|AB|222,又坐标原点O到线段AB的距离为,所以SOAB21,故选A.(2)两个圆恰有三条公切线,则两圆外切,两圆的标准方程分别为圆C1:(xa)2y24,圆C2:x2(yb)21,所以|C1C2|213,即a2b29.由(

17、)2,得(ab)218,所以3ab3,当且仅当“ab”时取“”所以选C.高考押题精练1C由已知得圆心在y轴上,且被x轴所分劣弧所对圆心角为.设圆心坐标为(0,a),半径为r,则rsin1,rcos|a|,解得r,即r2,|a|,即a,故圆C的方程为x2(y)2.故应选C.2C圆的标准方程为(xa)2y21,圆心M(a,0)到直线AB:xy20的距离为d,圆上的点到直线AB的最短距离为d11,(SABC)min23,解得a1或5.3.解析联立两圆方程可得公共弦所在直线方程为ax2ay50,故圆心(0,0)到直线ax2ay50的距离为(a0)故22,解得a2,因为a0,所以a.二轮专题强化练答案精

18、析专题六解析几何第1讲直线与圆1A方法一由题意可得l的斜率为,所以直线l的方程为y2(x1),即3x2y10.方法二设直线l的方程为3x2yC0,将点(1,2)代入,得C1,所以l的方程是3x2y10.2C由yk(x2)得直线恒过定点(2,0),因此可得点(2,0)必在圆内或圆上,故有(2)2022m40m4.又由方程表示圆的条件,故有m2440m4.综上可知m4.故选C.3A由题意得直线l的斜率存在,设为k,则直线l的方程为yk(x2),即kxy2k0.由点到直线的距离公式得,圆心到直线l的距离d,由圆的性质可得d212r2,即()2129,解得k2,即k.4A依题意得圆心坐标为(1,0),

19、由圆C与直线xy30相切得r,故圆C的方程为(x1)2y22.5A两圆的圆心均在第一象限,先求|PC1|PC2|的最小值,作点C1关于x轴的对称点C1(2,3),则(|PC1|PC2|)min|C1C2|5,所以(|PM|PN|)min5(13)54.6相交解析因为M(a,b)在圆O:x2y21外,所以a2b21,而圆心O到直线axby1的距离d1,所以直线与圆O相交72解析依题意,不妨设直线yxa与单位圆相交于A,B两点,则AOB90.如图,此时a1,b1,满足题意,所以a2b22.8(1)(x1)2(y)22(2)1解析(1)由题意,设圆心C(1,r)(r为圆C的半径),则r22122,解

20、得r.所以圆C的方程为(x1)2(y)22.(2)方法一令x0,得y1,所以点B(0,1)又点C(1,),所以直线BC的斜率为kBC1,所以过点B的切线方程为y(1)x0,即yx(1)令y0,得切线在x轴上的截距为1.方法二令x0,得y1,所以点B(0,1)又点C(1,),设过点B的切线方程为y(1)kx,即kxy(1)0.由题意,得圆心C(1,)到直线kxy(1)0的距离dr,解得k1.故切线方程为xy(1)0.令y0,得切线在x轴上的截距为1.9解解方程组得交点P(1,2)若点A,B在直线l的同侧,则lAB.而kAB,由点斜式得直线l的方程为y2(x1),即x2y50.若点A,B分别在直线

21、l的异侧,则直线l经过线段AB的中点(4,),由两点式得直线l的方程为,即x6y110.综上所述,直线l的方程为x2y50或x6y110.10解(1)由题设,可知直线l的方程为ykx1,因为l与C交于两点,所以1.解得k0),则半径r,当且仅当2a,即a1时取等号所以当a1时圆的半径最小,此时r,C(1,2),所以面积最小的圆的方程为(x1)2(y2)25,故选D.12D依题意并结合图形分析可知(图略),圆面C:(xa)2y2a21的圆心(a,0)应在不等式2xy4表示的平面区域内,且(a,0)不在直线2xy4上,即有由此解得a1或1a,圆C与直线y2x4不相交,t2不符合题意,应舍去综上,圆C的方程为(x2)2(y1)25.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3