1、第三节数系的扩充与复数的引入考点一复数的概念1.(2022福建,1)若(1i)(23i)abi(a,bR,i是虚数单位),则a,b的值分别等于()A.3,2 B.3,2 C.3,3 D.1,4解析(1i)(23i)32iabi,a3,b2,故选A.答案A2.(2022湖北,1)i为虚数单位,i607()A.i B.i C.1 D.1解析法一i607i41513i3i.故选B.法二i607i.故选B.答案B3.(2022山东,1)已知a,bR,i是虚数单位.若ai2bi,则(abi)2()A.34i B.34i C.43i D.43i解析由ai2bi可得a2,b1,则(abi)2(2i)234i
2、.答案A4.(2022重庆,1)实部为2,虚部为1的复数所对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限解析实部为2,虚部为1的复数为2i,所对应的点位于复平面的第二象限,选B.答案B5.(2022四川,3)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点()A.A B.BC.C D.D解析设zabi,则共轭复数为zabi,表示z与z的两点关于x轴对称.故选B.答案B6.(2022安徽,1)设i是虚数单位,若复数a(aR)是纯虚数,则a的值为()A.3 B.1 C.1 D.3解析复数aa(3i)a3i是纯虚数,所以a3.答案D7.(2022湖南,2)
3、复数zi(i1)(i为虚数单位)的共轭复数是()A.1i B.1i C.1i D.1i解析因为 zi(i1)i2i1i,所以z的共轭复数为1i.故选A.答案A8.(2022北京,9)复数i(1i)的实部为_.解析i(1i)ii21i,实部为1.答案19.(2022重庆,11)复数(12i)i的实部为_.解析(12i)ii2i22i,其实部为2.答案210.(2022江苏,3)设复数z满足z234i(i是虚数单位),则z的模为_.解析z234i,|z|2|34i|5,即|z|.答案考点二复数的运算1.(2022新课标全国,3)已知复数z满足(z1)i1i,则z()A.2i B.2i C.2I D
4、.2i解析由(z1)i1i,两边同乘以i,则有z11i,所以z2i.答案C2.(2022新课标全国,2)若a为实数,且3i,则a()A.4 B.3 C.3 D.4解析由3i,得2ai(3i)(1i)24i,即ai4i,因为a为实数,所以a4.故选D.答案D3.(2022山东,2)若复数z满足i,其中i为虚数单位,则z()A.1i B.1i C.1i D.1i解析i,zi(1i)ii21i,z1i.答案A4.(2022安徽,1)设i是虚数单位,则复数(1i)(12i)()A.33i B.13i C.3i D.1i解析(1i)(12i)12ii2i21i23i,故选C.答案C5.(2022湖南,1
5、)已知1i(i为虚数单位),则复数z()A.1i B.1i C.1i D.1i解析由1i知,z1i.故选D.答案D6.(2022安徽,1)设i是虚数单位,复数i3()A.i B.i C.1 D.1解析i3ii(1i)1.答案D7.(2022新课标全国,3)设zi,则|z|()A. B. C. D.2解析iiii,则|z|,选B.答案B8.(2022新课标全国,2)()A.12i B.12i C.12i D.12i解析12i,故选B.答案B9.(2022福建,2)复数(32i)i等于()A.23i B.23i C.23i D.23i解析复数z(32i)i23i,故选B.答案B10.(2022湖北
6、,2)i为虚数单位,()A.1 B.1 C.i D.i解析1,选B.答案B11.(2022广东,2)已知复数z满足(34i)z25,则z()A.34i B.34i C.34i D.34i解析由(34i)z25z34i,选D.答案D12.(2022陕西,3)已知复数z2i,则zz的值为()A.5 B. C.3 D.解析z2i,zz|z|222125.答案A13.(2022浙江,2)已知i是虚数单位,则(2i)(3i)()A.55i B.75i C.55i D.75i解析(2i)(3i)62i3ii255i.答案C14.(2022课标全国,2)复数z的共轭复数是()A.2i B.2iC.1i D.1i解析z1i,所以z1i,故选D.答案D15.(2022天津,9)i是虚数单位,计算的结果为_.解析i.答案i16.(2022浙江,11)已知i是虚数单位,计算_.解析.答案17.(2022四川,12)复数_.解析2i.答案2i5