收藏 分享(赏)

四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc

上传人:高**** 文档编号:214299 上传时间:2024-05-26 格式:DOC 页数:9 大小:971.50KB
下载 相关 举报
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第1页
第1页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第2页
第2页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第3页
第3页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第4页
第4页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第5页
第5页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第6页
第6页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第7页
第7页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第8页
第8页 / 共9页
四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文.doc_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、四川省攀枝花市第十五中学校2021届高三数学上学期第1次周考试题 文(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要)1.若集合,则( )A B C D2.已知复数z满足,则AB1 CD53.在中,则=( )A B C D4.若,则“且”是“且”的( )A充分不必要条件; B必要不充分条件; C充要条件; D既不充分又不必要条件。5某省普通高中学业水平考试成绩按人数所占比例依次由高到低分为,五个等级,等级,等级,等级,等级共.其中等级为不合格,原则上比例不超过.该省某校高二年级学生都参加学业水平考试,先从中

2、随机抽取了部分学生的考试成绩进行统计,统计结果如图所示.若该校高二年级共有1000名学生,则估计该年级拿到级及以上级别的学生人数有( )A人B人C人D人6若实数,满足约束条件,则( )A既有最大值也有最小值;B有最大值,但无最小值;C有最小值,但无最大值;D既无最大值也无最小值。7.已知,则( )ABCD8某几何体的三视图如图所示,则该几何体的体积是( )A B C D9.吕氏春秋音律篇记载了利用“三分损益”制定关于“宫、商、角、徵、羽”五音的方法,以一段均匀的发声管为基数“宫”,然后将此发声管均分成三段,舍弃其中的一段保留二段,这就是“三分损一”,余下来的三分之二长度的发声管所发出的声音就是

3、“徵”;将“徵”管均分成三份,再加上一份,即“徵”管长度的三分之四,这就是“三分益一”,于是就产生了“商”;“商”管保留三分之二,“三分损一”,于是得出“羽”;羽管“三分益一”,即羽管的三分之四的长度,就是角”.如果按照三分损益律,基数“宫”发声管长度为1,则“羽”管的长度为( )A BCD10.如图,在四棱锥中,平面,且,异面直线与所成角为,点,都在同一个球面上,则该球的表面积为( )A BC D11. 已知抛物线的焦点为,准线为,是上一点,直线与抛物线交于,两点,若,则=( )A B C D12.已知函数在上有两个零点,则的取值范围是( )ABCD二、填空题:(本大题共4小题,每小题5分,

4、共20分,把正确的答案填在答题卡横线上.)13. 已知数列的前项和,则 14.若定义在上的奇函数满足,则的值为_15已知的三内角、所对边长分别为是、,设向量,若,则角的大小为_.16.已知直线与圆:相交于,两点,为坐标原点,且,则实数的值为_。三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17(本小题满分12分)在等差数列中,已知.(1)求数列的通项公式;(2)设数列的前项和为。若,求的值.18(本小题满分12分)在中,内角,的对边分别为,已知(1)求;(2)是线段上靠近点的三等分点,且,求的面积19.(本小题满分12分)如图,在四棱锥中,底面为菱形,为的中

5、点.(1)若,求证:平面;(2)若平面平面,且,点在线段上,且,求三棱锥的体积.20(本小题满分12分)已知椭圆:经过点,且离心率为.(1)求椭圆的标准方程与焦距;(2)直线:与椭圆的交点为,两点,线段的中点为,试判断的形状。是否存在常数,使恒成立,并说明理由。21.(本小题满分12分)已知函数(1)若函数在上单调递增,求实数的取值范围;(2)当时,若(其中),证明:请考生在第(22)、(23)二题中任选一题做答,如果多做,则按所做的第一题记分。做答时用2B铅笔在答题卡上把所选题目的题号涂黑。22(本小题满分10分)在平面直角坐标系中,曲线C的参数方程为(为参数),直线的参数方程为(为参数),

6、以平面直角坐标系的原点为极点,轴正半轴为极轴,建立坐标系(1)求曲线的极坐标方程;(2)直线与曲线相交于,两点,若,求的值23(本小题满分10分)已知函数.(1)当时,求不等式的解集;(2)若不等式对任意的恒成立,求的取值范围.攀枝花市第十五中学校2020-2021(上)高2021届第1次周考数 学(文史类)一、选择题1-5 BCBAD 6-10 CDAAB 11-12 BC 二、填空题13. 14. 15 16. 三、解答题17解:(1)设数列的公差为d,因为,所以,解得,由,解得,所以(2)由(1)得,所以.令,解得.18.解:(1)由正弦定理,可得,则有,(2)令,由题意,在中,则,得,

7、即,的面积为19. (1)证明:, 又底面为菱形, 连结,则为正三角形, 又,平面, 平面; (2)解:平面平面,平面平面, ,平面, 平面, 又,平面,又, .【点睛】20.解:(1)因为椭圆:经过点,且离心率为,所以,又因为,可解得,焦距为,所求椭圆的方程为.(2)存在常数,使恒成立,证明如下:由,得,设,则,.又因为,所以,所以,为直角三角形。因为线段的中点为,所以,所以.存在常数,使恒成立.21. 解:(1) ,函数在上单调递增, 在恒成立,即:恒成立, 恒成立, ,即实数的取值范围为;(2)证明:当时, , ,即:,又 , ,整理得, .22. 解:(1)曲线的参数方程为为参数),转换为直角坐标方程为,整理得,根据,转换为极坐标方程为,即或(包含),所以曲线C的极坐标方程为(2)直线的参数方程为转换为直线的标准参数式为为参数)代入圆的直角坐标方程为,设方程两根为,所以,所以23. (1)当时,故等价于或或,解得或.故不等式的解集为.(2)当时,由得,即,即或对任意的恒成立.又,故的取值范围为.又,所以,综上,的取值范围为.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3