1、课时跟踪检测(十一)微积分基本定理一、选择题1.(x3x230)dx等于()A56B28C14 D.解析:选D(x3x230)dxx4x330x(4424)(4323)30(42).2. dx()A. B.C. D.解析:选Adxx2dxdxx3(x3x3).3设f(x)则f(x)dx等于()A. B.C. D不存在解析:选Cf(x)dxx2dx(2x)dxx3.4计算(1)dx的结果为()A1 B.C1 D1解析:选Cdx,(1)dx1dxdx1.5(江西高考)若f(x)x22f(x)dx,则f(x)dx()A1 BC. D1解析:选Bf(x)x22f(x)dx,f(x)dx2f(x)dx.
2、f(x)dx.二、填空题6若(2x3x2)dx0,则k等于_解析:(2x3x2)dx(x2x3) k2k30,k0(舍)或k1.答案:17计算定积分 (x2sin x)dx_.解析: (x2sin x)dx.答案:8设f(x)若f(f(1)1,则a_.解析:显然f(1)lg 10,f(0)03t2dtt3a3,得a31,a1.答案:1三、解答题9计算下列定积分(1) (sin xsin 2x)dx;(2) (|2x3|32x|)dx.解:(1)sin xsin 2x, (sin xsin 2x)dx1.(2)|2x3|32x| (|2x3|32x|)dx (4x)dx6dx4xdx2x26x2x2(2)2(2)(3)2662322245.10已知f(x) (12t4a)dt,F(a)f(x)3a2dx,求函数F(a)的最小值解:因为f(x) (12t4a)dt(6t24at) 6x24ax(6a24a2)6x24ax2a2,F(a)f(x)3a2dx(6x24axa2)dx(2x32ax2a2x) 22aa2a22a2(a1)211.所以当a1时,F(a)的最小值为1.