1、宁夏回族自治区银川市第二中学2020届高三数学上学期统练试题四 理(含解析)一选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则( )A. B. C. D. 【答案】A【解析】【分析】先求出集合B再求出交集.【详解】,则,故选A【点睛】本题考查了集合交集的求法,是基础题.2.设复数,在复平面内的对应点关于虚轴对称,则( )A. - 5B. 5C. - 4+ iD. - 4 - i【答案】A【解析】试题分析:由题意,得,则,故选A考点:1、复数的运算;2、复数的几何意义3.下列函数中,值域为的是( )A. B. C. D. 【答案
2、】B【解析】【分析】依次判断各个函数的值域,从而得到结果.【详解】选项:值域为,错误选项:值域为,正确选项:值域为,错误选项:值域为,错误本题正确选项:【点睛】本题考查初等函数的值域问题,属于基础题.4.设平面与平面相交于直线,直线在平面内,直线在平面内,且则“”是“”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 即不充分不必要条件【答案】A【解析】【详解】试题分析:, bm又直线a在平面内,所以ab,但直线不一定相交,所以“”是“ab”的充分不必要条件,故选A.考点:充分条件、必要条件.5.已知各项均为正数的等比数列的前4项和为15,且,则( )A. 16B. 8C.
3、4D. 2【答案】C【解析】【分析】利用方程思想列出关于的方程组,求出,再利用通项公式即可求得的值【详解】设正数的等比数列an的公比为,则,解得,故选C【点睛】本题利用方程思想求解数列的基本量,熟练应用公式是解题的关键6.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是26.7,天狼星的星等是1.45,则太阳与天狼星的亮度的比值为( )A. 1010.1B. 10.1C. lg10.1D. 1010.1【答案】A【解析】【分析】由题意得到关于的等式,结合对数的运算法则可得亮度的比值.【详解】两颗星的星等与亮
4、度满足,令,.故选A【点睛】本题以天文学问题为背景,考查考生的数学应用意识信息处理能力阅读理解能力以及指数对数运算.7.已知曲线在点处的切线方程为,则( )A. B. C. D. 【答案】D【解析】【分析】通过求导数,确定得到切线斜率的表达式,求得,将点的坐标代入直线方程,求得【详解】详解:,将代入得,故选D【点睛】本题关键得到含有a,b的等式,利用导数几何意义和点在曲线上得到方程关系8.函数((是常数),的部分图像如图所示,则f(0)=( )A. B. C. 0D. 【答案】D【解析】【分析】欲求f(0),须先求f(x)的解析式易求A,从而可求,由可求的值,从而使问题解决【详解】由f(x)A
5、sin(x+)(A,是常数,A0,0)的部分图象可得:A,T,又T,又,f(x)sin(x)f(0)sin故选:D【点睛】本题考查由yAsin(x+)的部分图象确定其解析式,结合图象求A,的值是关键,属于中档题9.已知满足约束条件,当目标函数在约束条件下取到最小值时,的最小值为( )A. 5B. 4C. D. 2【答案】B【解析】【详解】由得,直线的斜率,作出不等式对应的平面区域如图,由图可知当直线经过点时,直线的截距最小,此时最小由,解得,即,此时目标函数的最小值为,即,所以点在直线上,则原点到直线的距离,即的最小值.故选B考点:1、简单线性规划;2、点到直线的距离【思路点睛】作出不等式组对
6、应的平面区域,利用目标函数的几何意义确定取得最小值的条件,点在直线,而的几何意义为点到直线的距离的平方,将问题转化为求到直线的距离即可得到结论本题主要考查线性规划的基本应用,利用数形结合求出目标函数取得最小值的条件是解决本题的关键属于基础题10.求值:4cos 50tan 40()A. B. C. D. 21【答案】C【解析】【分析】原式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果【详解】4cos50tan40=4sin
7、40tan40=故选C【点睛】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键11.已知正三棱锥PABC,点P,A,B,C都在半径为的球面上,若PA,PB,PC两两互相垂直,则球心到截面ABC的距离为( )A. B. C. D. 【答案】A【解析】【分析】先利用正三棱锥的特点,将球的内接三棱锥问题转化为球的内接正方体问题,从而将所求距离转化为正方体中,中心到截面的距离问题,利用等体积法可实现此计算【详解】正三棱锥PABC,PA,PB,PC两两垂直,此正三棱锥的外接球即以PA,PB,PC为三边的正方体的外接圆O,圆O的半径为,正方
8、体的边长为2,即PAPBPC2球心到截面ABC的距离即正方体中心到截面ABC的距离设P到截面ABC的距离为h,则正三棱锥PABC的体积VSABChSPABPC222ABC为边长为2的正三角形,SABC(2)2h球心(即正方体中心)O到截面ABC的距离为故选:A【点睛】本题主要考球的内接三棱锥和内接正方体间的关系及其相互转化,棱柱的几何特征,球的几何特征,点到面的距离问题的解决技巧,有一定难度,属中档题12.已知,设函数若关于的不等式在上恒成立,则的取值范围为( )A. B. C. D. 【答案】C【解析】【分析】先判断时,在上恒成立;若在上恒成立,转化为在上恒成立【详解】,即,(1)当时,当时
9、,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以当时,在上恒成立;综上可知,的取值范围是,故选C【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析二填空题(本大题共4小题,每小题5分,一共20分)13.观察下列不等式,照此规律,第五个不等式为 【答案】:【解析】【详解】试题分析:照此规律,第个式子为,第五个为考点:归纳推理【名师点睛】归纳推理的定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理是由部分到整体、由个别到一般的推理14. 在四边形中, ,
10、, ,点在线段的延长线上,且,则_.【答案】.【解析】【分析】建立坐标系利用向量的坐标运算分别写出向量而求解【详解】建立如图所示的直角坐标系,则,因为,所以,因为,所以,所以直线的斜率为,其方程为,直线的斜率为,其方程为由得,所以所以【点睛】平面向量问题有两大类解法:基向量法和坐标法,在便于建立坐标系的问题中使用坐标方法更为方便15.已知f(x)是定义域为R的偶函数,当x0时,f(x)=x24x,那么,不等式f(x+2)5的解集是 【答案】(7,3)【解析】设x0.当x0时,f(x)x24x,f(x)(x)24(x)f(x)是定义在R上的偶函数,f(x)f(x),f(x)x24x(x0),f(
11、x)由f(x)5得或x5或x5.观察图像可知由f(x)5,得5x5.由f(x2)5,得5x25,7x3.不等式f(x2)5的解集是x|7x1,且a3+a4+a5=28,a4+2是a3,a5的等差中项数列bn满足b1=1,数列(bn+1bn)an的前n项和为2n2+n()求q的值;()求数列bn的通项公式 【答案】();().【解析】【分析】分析:()根据条件、等差数列的性质及等比数列的通项公式即可求解公比;()先根据数列前n项和求通项,解得,再通过叠加法以及错位相减法求.【详解】详解:()由是的等差中项得,所以,解得.由得,因为,所以.()设,数列前n项和为.由解得.由()可知,所以,故, .
12、设,所以,因此,又,所以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.19.函数f(x)6cos2sinx3(0)在一个周期内的图象如图所示,A为图象的最高点,B,C为图象与x轴的交点,且ABC为正三角形(1)求的值及函数f(x)的表达式;(2)若f(x0),且x0(),求f(x0+1)的值【答案】(1),f(x)2(2)【解析】【分析】(1)利用两角和公式和二倍
13、角公式对函数解析式化简,根据题意求得BC的长,进而求得三角函数的最小正周期,则可得求得f(x)的表达式,根据三角函数的性质求得函数f(x)的值域(2)由,知 x0(,),由f(),可求得即sin(),利用两角和的正弦公式即可求得f(+1)【详解】(1)函数f(x)6cos2sinx33cosxsinx2sin(x),由于ABC为正三角形,所以三角形的高为,所以BC4所以函数f(x)的最小正周期为T428,所以,故得到f(x)2(2)由于若f(x0),所以,整理得,由于x0()所以,所以,所以f(x0+1)2【点睛】本题考查由yAsin(x+)的部分图象确定其解析式,着重考查三角函数的化简求值与
14、正弦函数的性质,考查分析转化与运算能力,属于中档题20.如图,在四棱锥PABCD中,PA底面ABCD,ADAB,ABDC,ADDCAP2,AB1,点E为棱PC的中点(1)证明:BEDC;(2)求直线BE与平面PBD所成角的正弦值;(3)若F为棱PC上一点,满足BFAC,求二面角FABP的余弦值【答案】(1)见解析(2) (3) 【解析】试题分析:(I)以A为坐标原点,建立如图所示的空间直角坐标系,求出BE,DC的方向向量,根据,可得BEDC;(II)求出平面PBD的一个法向量,代入向量夹角公式,可得直线BE与平面PBD所成角的正弦值;()根据BFAC,求出向量的坐标,进而求出平面FAB和平面A
15、BP的法向量,代入向量夹角公式,可得二面角F-AB-P的余弦值试题解析:方法一:依题意,以点A为原点建立空间直角坐标系(如图所示),可得B(1,0,0),C(2,2,0),D(0,2,0),P(0,0,2)C由E为棱PC的中点,得E(1,1,1)(1)证明:向量(0,1,1),(2,0,0),故0,所以BEDC. (2)向量(1,2,0),(1,0,2)设n(x,y,z)为平面PBD的法向量,则不妨令y1,可得n(2,1,1)为平面PBD的一个法向量于是有,所以直线BE与平面PBD所成角的正弦值为.(3) 向量(1,2,0),(2,2,2),(2,2,0),(1,0,0)由点F在棱PC上,设,
16、01.故(12,22,2)由BFAC,得0,因此2(12)2(22)0,解得,即.设n1(x,y,z)为平面FAB的法向量,即不妨令z1,可得n1(0,3,1)为平面FAB的一个法向量取平面ABP的法向量n2(0,1,0),则cosn1,n2.易知二面角F AB P是锐角,所以其余弦值为.方法二:(1)证明:如图所示,取PD中点M,连接EM,AM.由于E,M分别为PC,PD的中点,故EMDC,且EMDC.又由已知,可得EMAB且EMAB,故四边形ABEM为平行四边形,所以BEAM.因PA底面ABCD,故PACD,而CDDA,从而CD平面PAD.因为AM平面PAD,所以CDAM.又BEAM,所以
17、BECD.(2)连接BM,由(1)有CD平面PAD,得CDPD.而EMCD,故PDEM.又因为ADAP,M为PD的中点,所以PDAM,可得PDBE,所以PD平面BEM,故平面BEM平面PBD,所以直线BE在平面PBD内的射影为直线BM.而BEEM,可得EBM为锐角,故EBM为直线BE与平面PBD所成的角依题意,有PD2,而M为PD中点,可得AM,进而BE.故在直角三角形BEM中,tanEBM,因此sinEBM,所以直线BE与平面PBD所成角的正弦值为.(3)如图所示,在PAC中,过点F作FHPA交AC于点H.因为PA底面ABCD,所以FH底面ABCD,从而FHAC.又BFAC,得AC平面FHB
18、,因此ACBH.在底面ABCD内,可得CH3HA,从而CF3FP.在平面PDC内,作FGDC交PD于点G,于是DG3GP.由于DCAB,故GFAB,所以A,B,F,G四点共面由ABPA,ABAD,得AB平面PAD,故ABAG,所以PAG为二面角F AB P的平面角在PAG中,PA2,PGPD,APG45.由余弦定理可得AG,cosPAG,所以二面角F AB P的余弦值为.考点:与二面角有关的立体几何综合题;直线与平面所成的角21.已知函数,其中,为自然对数的底数.()设是函数的导函数,求函数在区间上的最小值;()若,函数在区间内有零点,求的取值范围【答案】()当时,;当时,;当时,.()的范围
19、为.【解析】试题分析:()易得,再对分情况确定的单调区间,根据在上的单调性即可得在上的最小值.()设为在区间内的一个零点,注意到.联系到函数的图象可知,导函数在区间内存在零点,在区间内存在零点,即在区间内至少有两个零点. 由()可知,当及时,在内都不可能有两个零点.所以.此时,在上单调递减,在上单调递增,因此,且必有.由得:,代入这两个不等式即可得的取值范围.试题解答:()当时,所以.当时,由得.若,则;若,则.所以当时,在上单调递增,所以.当时,在上单调递减,在上单调递增,所以.当时,在上单调递减,所以.()设为在区间内的一个零点,则由可知,在区间上不可能单调递增,也不可能单调递减.则不可能
20、恒为正,也不可能恒为负.故在区间内存在零点.同理在区间内存在零点.所以在区间内至少有两个零点.由()知,当时,在上单调递增,故在内至多有一个零点.当时,在上单调递减,故在内至多有一个零点.所以.此时,在上单调递减,在上单调递增,因此,必有.由得:,有.解得.当时,在区间内有最小值.若,则,从而在区间上单调递增,这与矛盾,所以.又,故此时在和内各只有一个零点和.由此可知在上单调递增,在上单调递减,在上单调递增.所以,故在内有零点.综上可知,的取值范围是.【考点定位】导数的应用及函数的零点.(二)选考题:共10分,请在第22,23题中任选一题作答如果多做,则按所做的第一题计分22.在平面直角坐标系
21、中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点(1)求的取值范围;(2)求中点的轨迹的参数方程【答案】(1)(2)为参数,【解析】分析:(1)由圆与直线相交,圆心到直线距离可得(2)联立方程,由根与系数的关系求解详解:(1)的直角坐标方程为当时,与交于两点当时,记,则的方程为与交于两点当且仅当,解得或,即或综上,的取值范围是(2)的参数方程为为参数, 设,对应的参数分别为,则,且,满足于是,又点的坐标满足所以点的轨迹的参数方程是 为参数, 点睛:本题主要考查直线与圆的位置关系,圆的参数方程,考查求点的轨迹方程,属于中档题23.设函数(1)画出的图像;(2)当,求的最小值【答案】(1)见解析(2)【解析】分析:(1)将函数写成分段函数,再画出在各自定义域的图像即可(2)结合(1)问可得a,b范围,进而得到a+b的最小值详解:(1) 的图像如图所示(2)由(1)知,图像与轴交点的纵坐标为,且各部分所在直线斜率的最大值为,故当且仅当且时,在成立,因此的最小值为点睛:本题主要考查函数图像的画法,考查由不等式求参数的范围,属于中档题