1、整式的乘法与因式分解一、填空题1若xxaxbxc=x2000,则a+b+c=2(2ab)=,(a2)3(a32)=3如果(a3)2ax=a24,则x=4计算:(12a)(2a1)=5有一个长4109mm,宽2.5103mm,高6103mm的长方体水箱,这个水箱的容积是mm26通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:7已知(x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2(a1+a3)2的值8已知:A=2ab,B=3ab(a+2b),C=2a2b2ab2,则3ABAC=9用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽
2、为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张10我国北宋时期数学家贾宪的著作开方作法本源中的“开方作法本源图”如图所示,通过观察你认为图中的a=二、选择题11下列运算正确的是()Ax2x3=x6Bx2+x2=2x4C(2x)2=4x2D(3a3)(5a5)=15a812如果一个单项式与3ab的积为a2bc,则这个单项式为()A a2cB acC a2cD ac13计算(a+b)23(a+b)3的正确结果是()A(a+b)8B(a+b)9C(a+b)10D(a+b)1114若x2y2=20,且x+y=5,则xy的值是()A5B4C4D以上都不对15若25x2+30xy+k是一个完全平方
3、式,则k是()A36y2B9y2C6y2Dy216已知a+b=2,则a2b2+4b的值是()A2B3C4D617计算(5x+2)(2x1)的结果是()A10x22B10x2x2C10x2+4x2D10x25x218下列计算正确的是()A(x+7)(x8)=x2+x56B(x+2)2=x2+4C(72x)(8+x)=562x2D(3x+4y)(3x4y)=9x216y2三、解答题(共46分)19利用乘法公式公式计算(1)(3a+b)(3ab);(2)1001220计算:( x+1)2(x1)221化简求值:(2a3b)2(2a+3b)(2a3b)+(2a+3b)2,其中a=2,b=22解方程:2
4、(x2)+x2=(x+1)(x1)+x23如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积24学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来聪明的读者你能帮小华解答吗?整式的乘法与因式分解参考答案与试题解析一、填空题1若xxaxbxc=x2000,则a+b+c=【考点】同底数幂的乘法【分析】根据同底数幂的乘法:底数不变指数相加,可得答案【解答】解:xxaxbxc=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999【点评】本题
5、考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键2(2ab)=,(a2)3(a32)=【考点】单项式乘多项式;单项式乘单项式【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可【解答】解:2ab(ab)=2aba+2abb=2a2b+2ab2,(a2)3(a32)=a6(a32)=a38故答案为:2a2b+2ab2,a38【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理3如果(a3)2ax=a24,则x=【考点】幂的乘方与积的乘方;同底数幂的乘法【分析】先根据幂的乘方进行计算,再
6、根据同底数幂的乘法得出方程6+x=24,求出即可【解答】解:(a3)2ax=a24,a6ax=a24,6+x=24,x=18,故答案为:18【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=244计算:(12a)(2a1)=【考点】完全平方公式【分析】先提取“”号,再根据完全平方公式进行计算即可【解答】解:(12a)(2a1)=(12a)2=(14a+4a2)=1+4a4a2,故答案为:1+4a4a2【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键5有一个长4109mm,宽2.5103mm,高6103mm的长方体水箱,这个水箱的容积是m
7、m2【考点】单项式乘单项式【分析】直接利用单项式乘以单项式运算法则求出即可【解答】解:长4109mm,宽2.5103mm,高6103mm的长方体水箱,这个水箱的容积是:41092.51036103=61016(mm2)故答案为:61016【点评】此题主要考查了单项式乘以单项式运算等知识,正确掌握相关运算法则是解题关键6通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:【考点】单项式乘多项式【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系【解答】解:长方形的面积等于:2a(a+b),也等
8、于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab故答案为:2a(a+b)=2a2+2ab【点评】本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键7已知(x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2(a1+a3)2的值【考点】实数的运算【分析】利用多项式乘法公式去括号进而合并同类项得出a0=2,a1=6,a2=3,a3=1,进而代入求出即可【解答】解:(x)3=a0+a1x+a2x2+a3x3,(x)(x)2=()(22x+x2)=26x+3x2x3,则a0=2,a1=6,a2=3,a3=1,(a0+a2)
9、2(a1+a3)2=(2+3)2(61)2=5049=1【点评】此题主要考查了实数运算,正确利用多项式乘法运算是解题关键8已知:A=2ab,B=3ab(a+2b),C=2a2b2ab2,则3ABAC=【考点】整式的混合运算【分析】先将3ABAC变形为A(3BC),再将A=2ab,B=3ab(a+2b),C=2a2b2ab2代入,利用整式混合运算的顺序及法则计算即可【解答】解:A=2ab,B=3ab(a+2b),C=2a2b2ab2,3ABAC=A(3BC)=2ab33ab(a+2b)(2a2b2ab2)=2ab9a2b+18ab2a2b+ab2=2ab8a2b+19ab2=16a3b238a2
10、b3故答案为16a3b238a2b3【点评】本题考查了整式的混合运算,熟练掌握混合运算的顺序及法则是解题的关键9用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张【考点】整式的混合运算【专题】应用题【分析】根据长方形的面积等于长乘以宽列式,再根据多项式的乘法法则计算,然后结合卡片的面积即可作出判断【解答】解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片2张,B类卡片3张,C类卡片1张故本题答案为:2;3;1【点评】此题的
11、立意较新颖,主要考查多项式的乘法,熟练掌握运算法则是解题的关键10我国北宋时期数学家贾宪的著作开方作法本源中的“开方作法本源图”如图所示,通过观察你认为图中的a=【考点】规律型:数字的变化类【分析】由图片可以看出,从第三行数开始,除去第一项和最后一项,每个数都等于它前一列和列数与它相同的这两个数的和【解答】解:根据分析那么a就应该等于3+3即a=6故答案为6【点评】本题是一道找规律的题目,这类题型在中考中经常出现对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的二、选择题11下列运算正确的是()Ax2x3=x6Bx2+x2=2x4C(2x)2=4x2D(3a3)(5a5)=15
12、a8【考点】单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【分析】直接利用单项式乘以单项式运算法则以及合并同类项法则和积的乘方运算法则化简求出即可【解答】解:A、x2x3=x5,故此选项错误;B、x2+x2=2x2,故此选项错误;C、(2x)2=4x2,故此选项错误;D、(3a3)(5a5)=15a8,故此选正确故选:D【点评】此题主要考查了单项式乘以单项式运算以及合并同类项和积的乘方运算等知识,正确掌握相关运算法则是解题关键12如果一个单项式与3ab的积为a2bc,则这个单项式为()A a2cB acC a2cD ac【考点】整式的除法【分析】已知两个因式的积与其中一个因式,
13、求另一个因式,用除法根据单项式的除法法则计算即可得出结果【解答】解:( a2bc)(3ab)=ac故选B【点评】本题考查了单项式的除法法则单项式与单项式相除,把他们的系数分别相除,相同字母的幂分别相除,对于只在被除式里出现的字母,连同他的指数不变,作为商的一个因式13计算(a+b)23(a+b)3的正确结果是()A(a+b)8B(a+b)9C(a+b)10D(a+b)11【考点】幂的乘方与积的乘方;同底数幂的乘法【分析】根据幂的乘方和积的乘方、同底数幂的乘法的运算法则求解【解答】解:(a+b)23(a+b)3=(a+b)9故选B【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方
14、和积的乘方的运算法则14若x2y2=20,且x+y=5,则xy的值是()A5B4C4D以上都不对【考点】平方差公式【分析】根据平方差公式x2y2=(x+y)(xy),从而得出xy的值【解答】解:x2y2=20,x2y2=(x+y)(xy),x+y=5,(x+y)(xy)=20,xy=4故选C【点评】本题考查了平方差公式,平方差公式为(a+b)(ab)=a2b2本题是一道较简单的题目15若25x2+30xy+k是一个完全平方式,则k是()A36y2B9y2C6y2Dy2【考点】完全平方式【分析】利用完全平方公式的结构特征判断即可求出k的值【解答】解:25x2+30xy+k是一个完全平方式,(5x
15、)2+25x3y+k是一个完全平方式,k=(3y)2=9y2,故选:B【点评】此题主要考查了完全平方公式,正确掌握完全平方公式的基本形式是解题关键16已知a+b=2,则a2b2+4b的值是()A2B3C4D6【考点】因式分解的应用【分析】把a2b2+4b变形为(ab)(a+b)+4b,代入a+b=2后,再变形为2(a+b)即可求得最后结果【解答】解:a+b=2,a2b2+4b=(ab)(a+b)+4b,=2(ab)+4b,=2a2b+4b,=2(a+b),=22,=4故选C【点评】本题考查了代数式求值的方法,同时还利用了整体思想17计算(5x+2)(2x1)的结果是()A10x22B10x2x
16、2C10x2+4x2D10x25x2【考点】多项式乘多项式【分析】原式利用多项式乘多项式法则计算即可得到结果【解答】原式=10x25x+4x2=10x2x2故选B【点评】此题考查了多项式乘多项式,熟练掌握法则是解本题的关键18下列计算正确的是()A(x+7)(x8)=x2+x56B(x+2)2=x2+4C(72x)(8+x)=562x2D(3x+4y)(3x4y)=9x216y2【考点】多项式乘多项式;完全平方公式;平方差公式【分析】利用多项式乘多项式法则计算即可得到结果【解答】解:A、(x+7)(x8)=x2x56,错误;B、(x+2)2=x2+4x+4,错误;C、(72x)(8+x)=56
17、9x2x2,错误;D、(3x+4y)(3x4y)=9x216y2,正确;故选D【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键三、解答题(共46分)19利用乘法公式公式计算(1)(3a+b)(3ab);(2)10012【考点】平方差公式;完全平方公式【分析】(1)符合平方差公式结构,直接利用平方差公式计算即可;(2)先把1001变形为1000+1,再利用完全平方公式计算即可【解答】解:(1)(3a+b)(3ab)=(3a)2b2=9a2b2;(2)10012=(1000+1)2=10002+2000+1=1000000+2001=1002001【点评】本题考查了平方差公式、完全
18、平方公式,利用乘法公式进行整式的乘法运算平方差公式为(a+b)(ab)=a2b2本题是一道较简单的题目20计算:( x+1)2(x1)2【考点】完全平方公式【分析】先根据完全平方公式进行计算,再合并即可【解答】解:原式=(x2+5x+1)(x25x+1)=x2+5x+1x2+5x1=10x【点评】本题考查了完全平方公式的应用,能熟记完全平方公式是解此题的关键21化简求值:(2a3b)2(2a+3b)(2a3b)+(2a+3b)2,其中a=2,b=【考点】整式的混合运算化简求值【分析】先利用完全平方公式和平方差公式进行化简,然后再把a、b的值代入计算【解答】解:(2a3b)2(2a+3b)(2a
19、3b)+(2a+3b)2,=4a212ab+9b24a2+9b2+4a2+12ab+9b2=4a2+27b2,当a=2,b=时,原式=4(2)2+27()2=16+3=19【点评】本题主要考查完全平方公式和平方差公式的运用,熟练掌握公式结构是解题的关键,要注意此类题目的解题格式22解方程:2(x2)+x2=(x+1)(x1)+x【考点】多项式乘多项式;解一元一次方程【分析】利用多项式乘多项式法则计算即可得到结果【解答】解:去括号得:2x4+x2=x21+x移项合并得:x=3【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键23如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部
20、分是平行四边形,根据图中标注的数据,计算图中空白部分的面积【考点】整式的混合运算【专题】计算题【分析】矩形面积减去阴影部分面积,求出空白部分面积即可【解答】解:根据题意得:ab(ac)(bc)=ab(abacbc+c2)=abab+ac+bcc2=ac+bcc2【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键24学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来聪明的读者你能帮小华解答吗?【考点】幂的乘方与积的乘方【专题】计算题【分析】三个数利用幂的乘方变形为指数相同的幂,比较底数大小即可得到三个数大小【解答】解:能,根据题意得:3555=(35)111=(243)111,4444=(44)111=(256)111,5333=(53)111=(125)111,125243256,即533544,444435555333【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键