收藏 分享(赏)

2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc

上传人:高**** 文档编号:728646 上传时间:2024-05-30 格式:DOC 页数:8 大小:89KB
下载 相关 举报
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第1页
第1页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第2页
第2页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第3页
第3页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第4页
第4页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第5页
第5页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第6页
第6页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第7页
第7页 / 共8页
2017-2018学年高中数学人教A版选修2-2:课时跟踪检测(八) 生活中的优化问题举例 WORD版含解析.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、课时跟踪检测(八) 生活中的优化问题举例层级一学业水平达标1福建炼油厂某分厂将原油精炼为汽油,需对原油进行冷却和加热,如果第x小时时,原油温度(单位:)为f(x)x3x28(0x5),那么原油温度的瞬时变化率的最小值是()A8B.C1 D8解析:选C瞬时变化率即为f(x)x22x为二次函数,且f(x)(x1)21,又x0,5,故x1时,f(x)min1.2把一段长为12 cm的细铁丝锯成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A. cm2 B4 cm2C3 cm2 D2 cm2解析:选D设一段为x,则另一段为12x(0x12),则S(x)22,S(x).令S(x)0

2、,得x6,当x(0,6)时,S(x)0,当x(6,12)时,S(x)0,当x6时,S(x)最小S2(cm2)3某公司生产某种产品,固定成本为20 000元,每生产一单位产品,成本增加100元,已知总收益R与年产量x的关系是R(x)则总利润最大时,每年生产的产品是()A100 B150C200 D300解析:选D由题意,总成本为:C20 000100x,所以总利润为PRCP令P0,当0x400时,得x300;当x400时,P0恒成立,易知当x300时,总利润最大4设正三棱柱的体积为V,那么其表面积最小时,底面边长为()A. B2C. D.V解析:选C设底面边长为x,则高为h,S表3x2x2x2,

3、S表x,令S表0,得x.经检验知,当x时,S表取得最小值5内接于半径为R的球且体积最大的圆锥的高为()AR B2RC.R D.R解析:选C设圆锥高为h,底面半径为r,则R2(hR)2r2,r22Rhh2,Vr2hh(2Rhh2)Rh2h3,VRhh2.令V0得hR. 当0h0;当h2R时,V0),yx2,由y0,得x25,x(0,25)时,y0,x(25,)时,y0,所以x25时,y取最大值答案:259为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度

4、x(单位:cm)满足关系:C(x)(0x10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值解:(1)设隔热层厚度为x cm,由题设,每年能源消耗费用为C(x),再由C(0)8,得k40,因此C(x).而建造费用为C1(x)6x.最后得隔热层建造费用与20年的能源消耗费用之和为f(x)20C(x)C1(x)206x6x(0x10)(2)f(x)6,令f(x)0,即6,解得x5,x(舍去)当0x5时,f(x)0,当5x0,故x5是f(x)的最小值点,对应的最

5、小值为f(5)6570.当隔热层修建5cm厚时,总费用达到最小值70万元10某厂生产某种电子元件,如果生产出一件正品,可获利200元,如果生产出一件次品,则损失100元已知该厂制造电子元件过程中,次品率p与日产量x的函数关系是:p(xN*)(1)写出该厂的日盈利额T(元)用日产量x(件)表示的函数关系式;(2)为获最大日盈利,该厂的日产量应定为多少件?解:(1)由题意可知次品率p日产次品数/日产量,每天生产x件,次品数为xp,正品数为x(1p)因为次品率p,当每天生产x件时,有x件次品,有x件正品所以T200x100x25(xN*)(2)T25,由T0得x16或x32(舍去)当0x16时,T0

6、;当x16时,T0;所以当x16时,T最大即该厂的日产量定为16件,能获得最大日盈利层级二应试能力达标1已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为yx381x234,则使该生产厂家获得最大年利润的年产量为()A13万件B11万件C9万件 D7万件解析:选Cyx281,令y0,解得x9或x9(舍去),当0x9时,y0;当x9时,y0. 所以当x9时,y取得最大值2若一球的半径为r,作内接于球的圆柱,则圆柱侧面积的最大值为()A2r2 Br2C4r2 D.r2解析:选A设内接圆柱的底面半径为r1,高为t,则S2r1t2r124r1.S4. 令(r2rr)0得r1r

7、.此时S4r4rr2r2.3某商品一件的成本为30元,在某段时间内若以每件x元出售,可卖出(200x)件,要使利润最大每件定价为()A80元 B85元C90元 D95元解析:选B设每件商品定价x元,依题意可得利润为Lx(200x)30xx2170x(0x200)L2x170,令2x1700,解得x85.因为在(0,200)内L只有一个极值,所以以每件85元出售时利润最大4内接于半径为R的半圆的周长最大的矩形的宽和长分别为()A.和R B.R和RC.R和R D以上都不对解析:选B设矩形的宽为x,则长为2,则l2x4(0xR),l2,令l0,解得x1R,x2R(舍去)当0x0,当RxR时,l0,所

8、以当xR时,l取最大值,即周长最大的矩形的宽和长分别为R,R.5某公司一年购买某种货物400吨,每次都购买x吨,运费为4万元/次,一年的总存储费为4x万元,要使一年的总运费与总存储费用之和最小,则x_吨解析:设该公司一年内总共购买n次货物,则n,总运费与总存储费之和f(x)4n4x4x,令f(x)40,解得x20,x20(舍去),x20是函数f(x)的最小值点,故当x20时,f(x)最小答案:206.一个帐篷,它下部的形状是高为1 m的正六棱柱,上部的形状是侧棱长为3 m的正六棱锥(如图所示)当帐篷的顶点O到底面中心O1的距离为_ m时,帐篷的体积最大解析:设OO1为x m,底面正六边形的面积

9、为S m2,帐篷的体积为V m3. 则由题设可得正六棱锥底面边长为(m),于是底面正六边形的面积为S6()2(82xx2)帐篷的体积为V(82xx2)(x1)(82xx2)(82xx2)(1612xx3),V(123x2)令V0,解得x2或x2(不合题意,舍去)当1x2时,V0;当2x4时,V0.所以当x2时,V最大答案:27某集团为了获得更大的收益,每年要投入一定的资金用于广告促销,经调查,每年投入广告费t(百万元),可增加销售额约为t25t(百万元)(0t3)(1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?(2)现该公司准备共投入3百万元

10、,分别用于广告促销和技术改造,经预测,每投入技术改造费x百万元,可增加的销售额约为x3x23x(百万元)请设计一个资金分配方案,使该公司由此获得的收益最大(收益销售额投入)解:(1)设投入t(百万元)的广告费后增加的收益为f(t),则有f(t)(t25t)tt24t(t2)24(0t3),当t2时,f(t)取得最大值4,即投入2百万元的广告费时,该公司由此获得的收益最大(2)设用于技术改造的资金为x(百万元),则用于广告促销的资金为(3x)(百万元),又设由此获得的收益是g(x)(百万元),则g(x)(3x)25(3x)3x34x3(0x3),g(x)x24,令g(x)0,解得x2(舍去)或x

11、2.又当0x0;当2x3时,g(x)0,当x2时,g(x)取得最大值,即将2百万元用于技术改造,1百万元用于广告促销,该公司由此获得的收益最大8统计表明某型号汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数为yx3x8(0x120)(1)当x64千米/小时时,行驶100千米耗油量多少升?(2)若油箱有22.5升油,则该型号汽车最多行驶多少千米?解:(1)当x64千米/小时时,要行驶100千米需要小时,要耗油11.95(升)(2)设22.5升油能使该型号汽车行驶a千米,由题意得,22.5,a,设h(x)x2,则当h(x)最小时,a取最大值,h(x)x,令h(x)0x80,当x(0,80)时,h(x)0,故当x(0,80)时,函数h(x)为减函数,当x(80,120)时,函数h(x)为增函数,当x80时,h(x)取得最小值,此时a取最大值为a200.故若油箱有22.5升油,则该型号汽车最多行驶200千米

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3