1、微专题强化练(二)三角恒等变换的几个技巧(建议用时:40分钟)一、选择题1若2,则化简的结果是()Asin Bcos Ccos Dsin C2,cos 0,原式cos .故选C.2已知(0,),满足tan (),sin ,则tan 等于()A B C DB因为(0,),sin ,所以cos ,所以tan .又因为tan (),所以tan tan (),故选B.3已知cos (),则cos ()的值为()A B C DB()(),().cos ()cos ()cos (),即cos ().4若0,0,cos (),cos (),则cos ()等于()A B C DC0,.cos (),sin (
2、).0,.cos (),sin ().cos ()cos ()()cos ()cos ()sin ()sin ().5已知,(0,),且3sinsin (2),则的值为()A B C DB由题意得tan tan (2),(0,),cos,sin ,由3sin sin (2)得3sin ()sin (),即3sin ()cos 3cos ()sin sin ()cos cos ()sin ,sin ()cos 2cos ()sin ,tan ()1,又0,.二、填空题6._tan 原式tan .7若sin (),(0,),则sin 2cos2的值为_sin(),sin ,又(0,),cos (舍负),因此,sin2cos22sin cos (1cos )2(1).8._4原式4.三、解答题9已知sin (x),0x,求的值解原式2sin(x)2cos(x),sin (x),且0x,x(0,).cos (x),原式2.10求函数f(x)sin(x20)cos (x40)的最大值解f(x)sin (x20)cos (x20)60sin (x20)sin (x20)cos (x20)cos 60sin (x20)sin 60sin (x20)cos (x20)sin (x65),当x65k36090,即xk360155(kZ)时,f(x)有最大值.