1、京改版八年级数学上册期中测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、某农场挖一条480米的渠道,开工后,每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖米,那么下列方程正确的
2、是()ABCD2、把四张形状大小完全相同的小长方形卡片(如图,卡片的长为,宽为)不重叠地放在一个底面为长方形(长为,宽为4)的盒子底部(如图),盒子底面未被卡片覆盖的部分用阴影表示,则图中两块阴影部分的周长和是()ABCD3、下列算式正确的是()ABCD4、下列分式,中,最简分式有()A1个B2个C3个D4个5、如图,数轴的单位长度为1,如果点表示的数是-1,那么点表示的数是()A0B1C2D3二、多选题(5小题,每小题4分,共计20分)1、下列各式中不正确的是 ( )ABCD2、(多选)下列语句及写成式子不正确的是()A9是81的算术平方根,即B的平方根是C1的立方根是D与数轴上的点一一对应
3、的是实数3、下列关于的方程,不是分式方程的是()ABCD4、下列分式变形正确的是()ABCD5、以下的运算结果正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数示例:即4+3=7,则(1)用含x的式子表示m_;(2)当y2时,n的值为_2、计算:_3、若代数式在实数范围内有意义,则x的取值范围是_4、(2)3的立方根为_5、的有理化因式可以是_(只需填一个)四、解答题(5小题,每小题8分,共计40分)1、计算:(1);(2)2、根据已学知识,我们已经能比较有理数的大小,下面介绍一种新的比较大小的
4、方法:3210,32;(2)130,21;(2)(2)0,22像上面这样,根据两数之差是正数、负数或0,判断两数大小关系的方法叫做作差法比较大小(1)请将上述比较大小的方法用字母表示出来:若,则_;若,则_;若,则_;(2)请用上述方法比较下列代数式的大小(直接在空格中填写答案)_;当时,_;(3)试比较与的大小,并说明理由3、如果解关于的方程会产生增根,求的值.4、先化简:再求值,其中是从1,2,3中选取的一个合适的数5、先化简:,然后在的非负整数集中选取一个合适的数作为的值代入求值-参考答案-一、单选题1、A【解析】【分析】设原计划每天挖x米,则实际每天挖(x+20)米,由题意可得等量关系
5、:原计划所用时间-实际所用时间=4,根据等量关系列出方程即可【详解】解:设原计划每天挖x米,原计划所用时间为,实际所用时间为,依题意得:,故选:A【考点】本题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,再列出方程2、B【解析】【分析】分别求出较大阴影的周长和较小阴影的周长,再相加整理,即得出答案【详解】较大阴影的周长为:,较小阴影的周长为:,两块阴影部分的周长和为:= , 故两块阴影部分的周长和为16故选B【考点】本题考查了图形周长,整式加减的应用,利用数形结合的思想求出较大阴影的周长和较小阴影的周长是解题的关键3、D【解析】【分析】根据算术平方根的非负性,立
6、方根的定义即可判断【详解】A、,故 A错误;B、,故B错误;C、,故C错误;D、,故D正确【考点】本题考查了算术平方根和立方根,掌握相关知识是解题的关键4、B【解析】【分析】根据最简分式的定义(分式的分子和分母除1以外没有其它的公因式,叫最简分式)逐个判断即可【详解】解:,故原式不是最简分式;是最简分式,是最简分式,故原式不是最简分式,最简分式有2个故选:B【考点】本题考查了最简分式的定义,能熟记最简分式的定义是解此题的关键5、D【解析】【分析】直接利用数轴结合点位置进而得出答案【详解】解:数轴的单位长度为1,如果点表示的数是-1,点表示的数是:3故选D【考点】此题主要考查了实数轴,正确应用数
7、形结合分析是解题关键二、多选题1、ACD【解析】【分析】根据平方根和立方根的有关运算,对选项逐个判断即可【详解】解:A、,选项错误,符合题意;B、,选项正确,不符合题意;C、,选项错误,符合题意;D、,选项错误,符合题意;故选ACD【考点】此题考查了算术平方根和立方根的有关运算,熟练掌握相关运算是解题的关键2、ABC【解析】【分析】根据平方根,算术平方根、立方根以及数轴与实数的关系逐项进行判断即可【详解】解:A、9是81的算术平方根,即=9,因此选项A符合题意;B、a2的平方根为=a,因此选项B符合题意;C、1的立方根是1,因此选项C符合题意;D、实数与数轴上的点一一对应,因此选项D不符合题意
8、;故答案为:ABC【考点】本题考查了平方根、算术平方根、立方根以及数轴与实数,理解平方根、算术平方根、立方根的意义是正确判断的前提3、ABC【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断【详解】解:A、分母中不含未知数,不是分式方程,符合题意;B、分母中不含未知数,不是分式方程,符合题意;C、分母中不含未知数,不是分式方程,符合题意;D、分母中含未知数,是分式方程,不符合题意;故选:ABC【考点】判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母)4、ABC【解析】【分析】依据分式变形的
9、原则,上下同乘同一个不为0的数,不改变原分式大小依次进行判断即可【详解】 ,故A正确 ,故B正确 ,故C正确 ,故D错误故选ABC【考点】本题考查了分式的性质,熟练使用分式的性质对分式进行变形是解决本题的关键5、BD【解析】【分析】根据二次根式的加减运算法则和最简二次根式,对选项逐个判断即可【详解】解:,A选项错误,不符合题意;,B选项正确,符合题意;,C选项错误,不符合题意;,D选项正确,符合题意;故选BD【考点】此题考查了二次根式的加减运算,涉及了最简二次根式,熟练掌握二次根式的加减运算法则和最简二次根式是解题的关键三、填空题1、 【解析】【分析】(1)根据题意,可以用含x的式子表示出m;
10、(2)根据图形,可以用x的代数式表示出y,列出关于x的分式方程,从而可以求得x的值,进而得到n的值【详解】解:(1)由图可得, 故答案为:;(2),解得,故答案为:【考点】本题考查了分式的加减、解分式方程,解答本题的关键是明确题意,列出相应的代数式及分式方程及求出方程的解2、【解析】【分析】先分别化简负整数指数幂和绝对值,然后再计算【详解】,故填:【考点】本题考查负整数指数幂及实数的混合运算,掌握运算法则准确计算是解题关键3、x3【解析】【分析】本题考查二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解即可【详解】因为二次根式有意义必须满足被开方数为非负数所以有又因为分式分母不为零所
11、以故综上: 则:故答案为:x3【考点】二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱4、-2【解析】【分析】根据立方根的定义,掌握运算法则即可求出【详解】解:(-2)3=-8,-8的立方根是-2,故答案为:-2【考点】本题考查了立方根的知识,掌握运算法则是关键5、【解析】【分析】根据平方差公式和有理化因式的意义即可得出答案【详解】解:,的有理化因式为,故答案为:【考点】本题考查分母有理化,理解有理化因式的意义和平方差公式是正确解答的关键四、解答题1、(1);(2)【解析】【分析】(1)根据乘法分配律相乘,再化简二次根式即可;(2)先用完全平方公式进行计算,再合并即可【详解
12、】解:(1)= =(2) =【考点】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则和乘法公式进行准确计算2、 (1),=,(2),(3),理由见详解【解析】【分析】(1)根据作差法可作答;(2)利用作差法即可作答;(3)结合整式的加减混合运算法则,利用作差法即可作答;(1),;,;,故答案为:、=、;(2),;,又,故答案为:、;(3),理由如下:,又,【考点】本题考查了实数比较大小、二次根式的加减混合运算、整式的加减混合运算等知识,掌握相关的加减混合运算法则是解答本题的关键3、k=2【解析】【分析】首先根据分式方程的解法求出方程的解,然后根据增根求出k的值【详解】两边同时乘以(
13、x2)可得:x=2(x2)+k, 解得:x=4k,方程有增根,x=2, 即4k=2,解得:k=2【考点】本题主要考查的是分式方程有增根的情况,属于基础题型解决这种问题时,首先我们将k看作已知数,求出方程的解,然后根据解为增根得出答案4、,-2【解析】【分析】先根据分式的运算法则把所给代数式化简,再从1,2,3中选取一个使分式有意义的数代入计算即可【详解】=,当x=2时,原式=故答案为:-2【考点】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式5、2a,当a=0时,原式=2,当a=2时,原式=0【解析】【分析】原式的括号内根据平方差和完全平方公式化简约分,括号外根据分式的除法法则即可化简原式,最后a的负整数解是0,1,2,注意分式的分母不能为零,所以a不能取1【详解】原式=1-a+1=2-a不等式的非负整数解是0,1,2,分式分母不能为零,a不取1当a=0时,原式=2,或当a=2时,原式=0【考点】本题考查了分式的混合运算,平方差和完全平方公式,除法法则等知识,要注意分式的分母不能为零