1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、当n边形边数增加2条时,其内角和增加()ABCD2、如图,1、2、
2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、33、如图:B=C=90,E是BC的中点,DE平分ADC,则下列说法正确的有几个()(1)AE平分DAB;(2)EBADCE; (3)AB+CD=AD;(4)AEDE(5)DE=AEA2个B3个C4个D54、如图,AB=AD,BAO=DAO,由此可以得出的全等三角形是()ABCD5、如图,已知能直接判断的方法是()ABCD二、多选题(5小题,每小题4分,共计20分)1、若将一副三角板按如图所示的方式放置,则下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A12B如果230,则有ACDEC如果230,则有BCADD如果
3、230,必有4C2、下列长度的各种线段,可以组成三角形的是()A2,3,4B1,1,2C5,5,9D7,5,13、如图,点P在AOB的平分线上,若使AOPBOP,则需添加的一个条件是()AOA=OBBAP=BPCAOP=BOPDAPO=BPO4、如图,已知,下列结论正确的有()ABCD5、下列命题中正确的是()A有两个角和第三个角的平分线对应相等的两个三角形全等;B有两条边和第三条边上的中线对应相等的两个三角形全等;C有两条边和第三条边上的高对应相等的两个三角形全等D有两条边和一个角对应相等的两个三角形全等第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,将分别含有
4、、角的一副三角板重叠,使直角顶点重合,若两直角重叠形成的角为,则图中角的度数为_2、如果一个正多边形的一个内角是135,则这个正多边形是_3、如图,在中,平分,DEAC,若,那么_4、如果三角形两条边分别为3和5,则周长L的取值范围是_5、在ABC中,AB=AC,点D在BC上(不与点B,C重合)只需添加一个条件即可证明ABDACD,这个条件可以是_(写出一个即可)四、解答题(5小题,每小题8分,共计40分)1、已知ABC与ADE均为等腰直角三角形,且BACDAE90,点D在直线BC上 线 封 密 内 号学级年名姓 线 封 密 外 (1)如图1,当点D在CB延长线上时,求证:BECD;(2)如图
5、2,当D点不在直线BC上时, BE、CD相交于M,直接写出CME的度数;求证:MA平分CME2、如图,在ABC中,ABC=90,AB=CB,点E在边BC上,点F在边AB的延长线上,BE=BF(1)求证:ABECBF;(2)若CAE=30,求ACF的度数3、已知:如图,ABC是任意一个三角形,求证:A+B+C=1804、如图所示,已知FDBC于D,DEAB于E,AFD=150,B=C,求EDF的大小5、如图,已知射线AB与直线CD交于点O,OF平分BOC,OGOF于O,AEOF,且A=30(1)求DOF的度数;(2)试说明OD平分AOG-参考答案-一、单选题1、B【解析】【分析】根据n边形的内角
6、和定理即可求解【详解】解:原来的多边形的边数是n,则新的多边形的边数是n2(n22)180(n2)180360 线 封 密 内 号学级年名姓 线 封 密 外 故选:B【考点】本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度2、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.3、B【解析】【分析】过点E作EFAD垂足为点F,证明DEFDEC(AAS);得出CEEF,DCDF,CEDFED,证明RtAFERtABE(HL);得出AFAB,FAEB
7、AE,AEFAEB,即可得出答案【详解】解:如图,过点E作EFAD,垂足为点F,可得DFE90,则DFEC,DE平分ADC,FDECDE,在DCE和DFE中,DEFDEC(AAS);CEEF,DCDF,CEDFED,E是BC的中点,CEEB,EFEB,在RtABE和RtAFE中,RtAFERtABE(HL);AFAB,FAEBAE,AEFAEB,AE平分DAB,故结论(1)正确,则ADAF+DFAB+CD,故结论(3)正确;可得AEDFED+AEFFEC+BEF90,即AEDE故结论(4)正确ABCD,AEDE,(5)错误,EBADCE不可能成立,故结论(2)错误综上所知正确的结论有3个 线
8、封 密 内 号学级年名姓 线 封 密 外 故答案为:B【考点】本题考查全等三角形的判定与性质、平行线的判定等内容,作出辅助线是解题的关键4、B【解析】【分析】观察图形,运用SAS可判定ABO与ADO全等【详解】解:AB=AD,BAO=DAO,AO是公共边,ABOADO (SAS)故选B【考点】本题考查全等三角形的判定,属基础题,比较简单5、A【解析】【分析】根据三角形全等的判定定理解答.【详解】在ABC和DCB中,,(SAS),故选:A.【考点】此题考查全等三角形的判定定理:SSS、SAS、ASA、AAS、HL,根据已知条件找到全等所需的对应相等的边或角是解题的关键.二、多选题1、BD【解析】
9、【分析】根据两种三角形的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案【详解】解:CABDAE90,13,故A错误230,1360CAD90+60150, D+CAD180,ACDE,故B正确,230,1360, , 线 封 密 内 号学级年名姓 线 封 密 外 不平行, 故C错误,230,1360, 由三角形的内角和定理可得: 445,故D正确故选:B,D【考点】此题考查平行线的判断,三角形的内角和定理的应用,解题关键在于根据三角形的内角和来进行计算2、AC【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析【详解】
10、解:A、 ,能构成三角形,符合题意;B、1+1=2,不能构成三角形,不符合题意;C、,能构成三角形,符合题意;D、5+17,不能构成三角形,不符合题意故选AC【考点】此题主要考查了三角形三边关系,根据第三边的范围是:大于已知的两边的差,而小于两边的和是解决问题的关键3、AD【解析】【分析】由已知可知一边一角对应相等,再结合各选项根据全等三角形的判定方法逐一进行判断即可【详解】点P在AOB的平分线上, ,又有 ,A、若 ,可用边角边证明AOPBOP,故本选项符合题意;B、若 ,是边边角,不能证明AOPBOP,故本选项不符合题意;C、若,只有一对角,一对边对应相等,不能证明AOPBOP,故本选项不
11、符合题意;D、若 ,可用角边角证明AOPBOP,故本选项符合题意;故选:AD【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键4、ACD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 只要证明ABEACF,ANCAMB,利用全等三角形的性质即可一一判断【详解】解:在ABE和ACF中,ABEACF(AAS),BAECAF,BECF,ABAC,BAEBACCAFBAC,即12,故C正确;在ACN和ABM中,ACNABM(ASA),故D正确;CNBMCFBE,EMFN,故A正确,CD与DN的大小无法确定,故B错误故选:ACD【考点】
12、本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键5、AB【解析】【分析】结合已知条件和全等三角形的判定方法,对所给的四个命题依次判定,即可解答【详解】A、正确可以用AAS判定两个三角形全等;如图:BB,CC,AD平分BAC,AD平分BAC,且ADAD, BB,CC,BACBAC,AD,AD分别平分BAC,BAC,BADBAD ,ABDABD(AAS),ABAB,在ABC和ABC中, , 线 封 密 内 号学级年名姓 线 封 密 外 ABCABC(AAS)B、正确可以用“倍长中线法”,用SAS定理,判断两个三角形全等,如图, , , ,A
13、D,AD分别为、 的中线,分别延长AD,AD到E,E,使得AD=DE,AD=DE, ,ADCEDB,BE=AC,同理:BE=AC,BE=BE,AE=AE,ABEABE,BAE=BAE,E=E,CAD=CAD,BAC=BAC, , ,BACBACC、不正确因为这个高可能在三角形的内部,也有可能在三角形的外部,也就是说,这两个三角形可能一个是锐角三角形,一个是钝角三角形,所以就不全等D、不正确,必须是两边及其夹角分别对应相等的两个三角形全等故选:AB【考点】本题考查了全等三角形的判定方法,要根据选项提供的已知条件逐个分析,看是否符合全等三角形的判定方法,注意SSA是不能判定两三角形全等的三、填空题
14、1、#140度【解析】【分析】如图,首先标注字母,利用三角形的内角和求解,再利用对顶角的相等,三角形的外角的性质可得答案【详解】解:如图,标注字母,由题意得: 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题考查的是三角形的内角和定理,三角形的外角的性质,掌握以上知识是解题的关键2、正八边形【解析】【分析】根据正多边形的外角和为即可求出正多边形的边数【详解】解:正多边形的一个内角是135,它的每一个外角为45又因为多边形的外角和恒为360,360458,即该正多边形为正八边形故答案为:正八边形【考点】本题主要考查正多边形的外角和,掌握正多边形的外角和是解决问题的关键3、30
15、#30度【解析】【分析】由三角形的内角和定理可求解BAC的度数,结合角平分线的定义可得CAD的度数,利用平行线的性质可求解【详解】解:C75,B45,BAC180BC60,AD平分BAC,CADBAC30,DEAC,ADECAD30故答案为30【考点】本题主要考查三角形的内角和定理,平行线的性质,角平分线的定义,求解CAD的度数4、10L16【解析】【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案【详解】设第三边长为x,有两条边分别为3和5,5-3x5+3, 线 封 密 内 号学级年名姓 线 封 密 外 解得2x8,2+3+5x+3+58+3+5,周长L=x+3+5
16、,10L16,故答案为: 10L16【考点】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键5、BAD=CAD(或BD=CD)【解析】【分析】证明ABDACD,已经具备 根据选择的判定三角形全等的判定方法可得答案【详解】解: 要使 则可以添加:BAD=CAD,此时利用边角边判定:或可以添加: 此时利用边边边判定:故答案为:BAD=CAD或()【考点】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键四、解答题1、 (1)见解析(2)90;见解析【解析】【分析】(1)先推出CAD=BAE,C=ABC=45,然后证明CADBAE得到AB
17、E=C=45,则EBC=ABE+ABC=90,即EBCD;(2)同理可证BAECAD,得到ABE=ACD,再由EMC=EBC+BCD,得到EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,由BAECAD,得到AG=AF,证明RtAGMRtAFM得到AMG=AMF,即AM平分EMC(1)解:ABC与ADE均为等腰直角三角形,且BACDAE90,AB=AC,AE=AD,DAE+DAB=CAB+DAB,CAD=BAE,C=ABC=45,CADBAE(SAS),ABE=C=45,EBC=ABE+ABC=90,即EBCD;(2)解:同理可证BAECAD,ABC=AC
18、B=90,ABE=ACD,EMC=EBC+BCD,EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,BAECAD, 线 封 密 内 号学级年名姓 线 封 密 外 AG=AF,在RtAGM和RtAFM中,RtAGMRtAFM(HL),AMG=AMF,即AM平分EMC【考点】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键2、(1)见解析;(2)ACF的度数为60【解析】【分析】(1)由ABC=90可得CBF=90,再由SAS就即可得出ABECBF;(2)根据题意可得BAC=ACB=45由CAE=30可得BAE
19、=15,即BCF=15,进而可以求出ACF的度数【详解】(1)证明:ABC=90,ABC=CBF=90在ABE和CBF中,ABECBF(SAS);(2)解:ABECBF,BAE=BCF,ABC=90,AB=CB,BCA=BAC=45,CAE=30,BAE=15,BCF=15,ACF=BCF+ACB,ACF=15+45=60答:ACF的度数为60.【考点】本题主要考查全等三角形的判定与性质,解此题的关键在于熟练掌握全等三角形的判定方法.3、证明见解析【解析】【分析】过点A作EFBC,利用EFBC,可得1=B,2=C,而1+2+BAC=180,利用等量代换可证BAC+B+C=180【详解】 线 封
20、 密 内 号学级年名姓 线 封 密 外 解:如图,过点A作EFBC,EFBC,1=B,2=C,1+2+BAC=180,BAC+B+C=180,即A+B+C=180【考点】本题考查了三角形的内角和定理的证明,作辅助线把三角形的三个内角转化到一个平角上是解题的关键4、EDF的大小为60【解析】【分析】根据三角形内角和定理以及四边形内角和定理即可求出答案【详解】解:AFD=C+FDC,FDC=90,AFD=150,C=60,B=C,A=60,A+AED+EDF+AFD=360,EDF=60故EDF的大小为60【考点】本题考查了三角形的内角和定理,四边形内角和定理,解题的关键是熟练三角形内角和定理,本题属于基础题型5、(1)150;(2)证明见解析【解析】【分析】(1)根据两直线平行,同位角相等可得,再根据角平分线的定义求出,然后根据平角等于列式进行计算即可得解;(2)先求出,再根据对顶角相等求出,然后根据角平分线的定义即可得解【详解】解:(1),平分,;(2), 线 封 密 内 号学级年名姓 线 封 密 外 平分【考点】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键