1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版七年级数学上册期末模拟考试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在4,0,2.5,|3|这四个数中,最大的数是()A4B0C2.5D|
2、3|2、|6|的倒数是()A6B6CD3、如图,点O在直线AB上,OD是AOC的平分线,OE是COB的平分线若DOC=70,则BOE的度数是()A30B40C25D204、如图,数轴上三点所表示的数分别是、,已知,且是关于的方程的一个解,则的值为()ABCD5、下列说法:(1)两点之间线段最短;(2)两点确定一条直线;(3)同一个锐角的补角一定比它的余角大90;(4)A、B两点间的距离是指A、B两点间的线段;其中正确的有()A一个B两个C三个D四个二、多选题(5小题,每小题4分,共计20分)1、下列说法中,错误的是 ()A角的平分线就是把一个角分成两个角的射线B若AOBAOC,则OA是AOC的
3、平分线C角的大小与它的边的长短无关DCAD与BAC的和一定是BAD2、下列图形中,属于立体图形的是()ABCD3、已知一个单项式的系数是5,次数是2,则这个单项式可以是()A5y2B5x5C5x2D5xy4、下列说法中,错误的是()A0是最小的整数B最大的负整数是1 线 封 密 内 号学级年名姓 线 封 密 外 C有理数包括正有理数和负有理数D一个有理数的平方总是正数5、A、B、C三点在同一条直线上,MN分别是ABBC的中点,且AB=50,BC=30,则MN的长为()A10B20C30D40第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图所示的三个图中,不是三棱柱的
4、展开图的是_(只填序号)2、若关于x的方程(m1)x|m2|=3是一元一次方程,则m的值为_3、多项式是关于的四次三项式,则_4、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_(结果用含、代数式表示).5、中国古代的算筹计数法可追溯到公元前5世纪摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如 表示, 表示2369,则 表示_四、解答题(4小题,每小题1
5、0分,共计40分)1、解下列方程: (1)(2) 2、周末,小亮一家三口乘轿车去看望爷爷、奶奶和外公、外婆早上从家里出发,向南走了2千米到超市买东西,然后继续向南走了5千米到爷爷家下午从爷爷家出发向北走了16千米到达外公家,傍晚返回自己家中(1)若以小亮家为原点,向南为正方向,用1个单位长度表示2千米,请画出数轴,并将超市、爷爷家、外公家的位置在数轴上分别用A,B,C表示出来;(2)外公家与超市间的距离为多少千米?(3)若轿车每千米耗油0.1升,求小亮一家从早上出发到傍晚返回家中轿车所行路程的耗油量3、定义:数轴上的三点,如果其中一个点与近点距离是它与远点距离的,则称该点是其他两个点的“倍分点
6、”例如数轴上点A,B,C所表示的数分别为1,0,2,满足ABBC,此时点B是点A,C的“倍分点”已知点A,B,C,M,N在数轴上所表示的数如图所示(1)A,B,C三点中,点 是点M,N的“倍分点”;(2)若数轴上点M是点D,A的“倍分点”,则点D对应的数有 个,分别是 ;(3)若数轴上点N是点P,M的“倍分点”,且点P在点N的右侧,求此时点P表示的数4、计算: 线 封 密 内 号学级年名姓 线 封 密 外 -参考答案-一、单选题1、D【解析】【详解】分析:|3|=3,再去比较4,0,2.5,3这四个数即可得出结论详解:|3|=3,且有402.53,最大的数是|3|故选D点睛:本题考查了有理数大
7、小的比较以及去绝对值符号,解题的关键是找出|3|=3,再去进行比较2、C【解析】【分析】根据互为倒数的两个数的积等于1解答【详解】|6|=6又6=1,|6|的倒数是,故答案为C.【考点】此题考查倒数、绝对值,解题关键在于互为倒数的两个数的积等于1.3、D【解析】【分析】根据角平分线的定义求出AOC,根据邻补角的定义求出BOC,根据角平分线的定义计算即可【详解】OD是AOC的平分线,AOC=2COD=140,BOC=180-AOC=40,OE是COB的平分线,BOE=BOC=20,故选D【考点】本题考查的是角平分线的定义、角的计算,掌握角平分线的定义、结合图形正确进行角的计算是解题的关键4、A【
8、解析】【分析】先根据数轴的定义及求出c的值,再将c的值代入关于x的方程即可【详解】由数轴的定义及得:解得: 线 封 密 内 号学级年名姓 线 封 密 外 将代入方程得:解得:故选:A【考点】本题考查了数轴的定义、一元一次方程的解的定义,利用数轴的定义求出c的值是解题关键5、C【解析】【分析】(1)根据线段的性质即可求解;(2)根据直线的性质即可求解;(3)余角和补角一定指的是两个角之间的关系,同角的补角比余角大90;(4)根据两点间的距离的定义即可求解【详解】(1)两点之间线段最短是正确的;(2)两点确定一条直线是正确的;(3)同一个锐角的补角一定比它的余角大90是正确的;(4)A、B两点间的
9、距离是指A、B两点间的线段的长度,原来的说法是错误的故选C【考点】本题考查了补角和余角、线段、直线和两点间的距离的定义及性质,是基础知识要熟练掌握二、多选题1、ABD【解析】【分析】根据角平分线的性质和角的含义以及角的计算分别进行解答,即可得出答案【详解】解:A、角的平分线就是把一个角分成两个相等的角的射线,故本选项错误,符合题意;B、若AOBAOC,OA也不是AOC的平分线,如图,故本选项错误,符合题意;C、角的大小与它的边的长短无关,故本选项正确,不符合题意;D、当射线在的内部时,与的差是,故本选项错误,符合题意;故选:ABD【考点】此题考查了角的大小比较、角平分线的性质和角的计算,关键掌
10、握角平分线的性质和角的画法,多数角分两种情况画,在角的内部和角的外部2、ACD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据立体图形的定义:是各部分不都在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形,进行逐一判断即可【详解】解:A、是立体图形,符合题意;B、不是立体图形,不符合题意;C、是立体图形,符合题意;D、是立体图形,符合题意;故选ACD【考点】本题主要考查了立体图形的定义,解题的关键在于能够熟练掌握立体图形的定义3、ACD【解析】【分析】根据单项式系数、次数的定义来求解单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次
11、数【详解】解:A. 系数是5,次数是2,故选项符合题意;B. 系数是5,次数是5,故选项不符合题意;C. 系数是5,次数是2,故选项符合题意;D. 5xy系数是5,次数是2,故选项符合题意故选ACD.【考点】本题主要考查了单项式系数、次数的定义,熟悉掌握该定义是关键.4、ACD【解析】【分析】根据负数、正数、整数和有理数的定义选出正确答案【详解】解:A、0不是最小的整数,故本选项符合题意;B、最大的负整数-1,故本选项不符合题意;C、有理数包括正有理数和负有理数以及0,故本选项符合题意;D、0的平方还是0,不是正数,故本选项符合题意故选ACD【考点】本题主要考查了有理数的分类,正负数的概念,没
12、有最大的正数,也没有最大的负数,最大的负整数是-1正确理解有理数的定义5、AD【解析】【分析】根据题意画出图形,再根据图形求解即可【详解】解:(1)当C在线段AB延长线上时,如图1, 线 封 密 内 号学级年名姓 线 封 密 外 M、N分别为AB、BC的中点,BM=AB=25,BN=BC=15;MN=BM+BN=25+15=40;(2)当C在AB上时,如图2,同理可知BM=25,BN=15,MN=BM-BN=25-15=10;所以MN=40或10,故选:AD【考点】本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况三、填空题1、【解析】【分析
13、】根据三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,可得答案【详解】解:三棱柱的两底展开是在矩形两端各有一个三角形,侧面展开是三个矩形,所以不是三棱柱的展开图的是故答案为:【考点】本题考查了几何体的展开图,注意两底面是对面,展开是两个全等的三角形,侧面展开是三个矩形2、3【解析】【分析】直接利用一元一次方程的定义分析得出答案【详解】解:关于x的方程(m-1)x|m-2|=3是一元一次方程,|m-2|=1且m-10,解得:m=3故答案为:3【考点】本题主要考查了一元一次方程的定义,正确把握定义是解题关键只含有一个未知数,且未知数的次数是1,一次项系数不是0,这是这类题目考查的重
14、点3、【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:多项式2x5是关于x的四次三项式,m14,解得m5,故答案为:5【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键4、a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),所以9个拼
15、接时,总长度为9a-8(a-b)=a+8b,故答案为a+8b.【考点】本题考查了规律题图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.5、【解析】【分析】根据算筹记数的规定可知,“ ”表示一个4位负数,再查图找出对应关系即可得表示的数【详解】解:由已知可得:“ ”表示的是4位负整数,是故答案为:【考点】本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定四、解答题1、 (1);(2) 【解析】【分析】(1)移项,合并同类项,系数化成1即可;(2)先去分母,然后再解方程即可【详解】解:(1)移项得:合并同类项的:系数化成1得:;(2) 线 封 密 内 号学级
16、年名姓 线 封 密 外 去分母得:解之得:【考点】本题考查了解一元一次方程的解法,熟悉相关解法是解题的关键2、 (1)见解析(2)11千米(3)3.2升【解析】【分析】(1)根据题意,在数轴上表示出A、B、C的位置即可;(2)点A表示的数减去点C表示的数就得AC表示的单位长度,然后再乘以2即可;(3)根据“总耗油量路程小轿车每千米耗油量”计算即可(1)解:点A、B、C如图所示:(2)解:1-(-4.5)=5.5,5.52=11(千米)答:外公家与超市间的距离为11千米(3)解:小亮一家走的路程为1+2.5+|-8|+4.5=16,162=32(千米),共耗油:0.132=3.2(升)答:小亮一
17、家从早上出发到傍晚返回家中轿车所行路程的耗油量为3.2升【考点】本题主要考查了正数和负数的应用、数轴及其应用,理解数轴和正负数的意义是解答本题的关键3、(1)B;(2)4;2,4,1,7;(3)或24【解析】【分析】(1)利用“倍分点”的定义即可求得答案;(2)设D点坐标为x,利用“倍分点”的定义,分两种情况讨论即可求出答案;(3)利用“倍分点”的定义,结合点P在点N的右侧,分两种情况讨论即可求出答案【详解】解:(1)BM=0-(-3)=3,BN=6-0=6,BM=BN,点B是点M,N的“倍分点”;(2)AM=-1-(-3)=2,设D点坐标为x,当DM=AM时,DM=1,|x-(-3)|=1,
18、解得:x=-2或-4,当AM=DM时,DM=2AM=4,|x-(-3)|=4,解得:x=1或-7,综上所述,则点D对应的数有4个,分别是-2,-4,1,-7, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:4;-2,-4,1,-7;(3)MN=6-(-3)=9,当PN=MN时,PN=9=,点P在点N的右侧,此时点P表示的数为,当MN=PN时,PN=2MN=29=18,点P在点N的右侧,此时点P表示的数为24,综上所述,点P表示的数为或24【考点】本题考查了数轴结合新定义“倍分点”,正确理解“倍分点”的含义是解决问题的关键4、0【解析】【分析】先将减法统一为加法,然后再相加【详解】解:原式=-7.7+()+5.75=-7.7+(-2.3)+(4.25+5.75)=-10+10=0【考点】本题主要考查了有理数的加减法,掌握有理数的加减法法则是解题的关键