1、京改版八年级数学上册期末定向练习试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若,则a,b,c的大小关系为()ABCD2、如图,点在的延长线上,于点,交于点若,则的度数为()A65B70C75
2、D853、如图,与交于点,则的度数为()ABCD4、对于数字-2+,下列说法中正确的是()A它不能用数轴上的点表示出来B它比0小C它是一个无理数D它的相反数为2+5、已知,a介于两个连续自然数之间,则下列结论正确的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如果方程有增根,则它的增根可能为()Ax=1Bx=-1Cx=0Dx=32、将一个三角形纸片剪开分成两个三角形,这两个三角形可能是()A都是直角三角形B都是钝角三角形C都是锐角三角形D是一个直角三角形和一个钝角三角形3、在下列分式中,不能再约分化简的分式有()ABCD4、下列各数中的无理数是()ABCD5、知:如图,点P在线
3、段外,且,求证:点P在线段的垂直平分线上在证明该结论时,需添加辅助线,则作法正确的是()A作的平分线交于点CB过点P作于点C且C取中点C,连接D过点P作,垂足为C第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知有意义,如果关于的方程没有实数根,那么的取值范围是_2、如图,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,AD与CE相交于点F,若,则_3、对于任意不相等的两个数a,b,定义一种运算如下:,如那么_4、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米
4、5、如图,若,则_四、解答题(5小题,每小题8分,共计40分)1、如图,在ABC和DEB中,ACBE,C90,ABDE,点D为BC的中点, (1)求证:ABCDEB (2)连结AE,若BC4,直接写出AE的长2、计算(1) ;(2)3、在数轴上作出表示的点(保留作图痕迹,不写作法)4、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数5、求下列各式中的x(1)x257;(2)(x+1)3640-参考答案-一、单选题1、C【解析】【分析】根据无理数的估算进行大小比较【详解】解:,又,故选:C【考点】本题考查求一个数的算术平方根,求一个数的立方根及无理数的估
5、算,理解相关概念是解题关键2、B【解析】【分析】根据题意于点,交于点,则,即【详解】解:,故选B【考点】本题考查垂直的性质,解题关键在于在证明3、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键4、C【解析】【分析】根据数轴的意义,实数的计算,无理数的定义,相反数的定义判断即可【详解】A数轴上的点和实数是一一对应的,故该说法错误,不符合题意;B,故该说法错误,不符合题意;C是一个无理数,故该说法正确,符合题意;D的相反数为,故该说法错误,不符合题意;故选:C【考点】本题考查数
6、轴的意义,实数的计算,无理数的定义,相反数的定义,熟练掌握相关计算法则是解答本题的关键5、C【解析】【分析】先估算出的范围,即可得出答案【详解】解:,在3和4之间,即故选:C【考点】本题考查了估算无理数的大小能估算出的范围是解题的关键二、多选题1、AB【解析】【分析】根据分式方程的增根的定义即可得解【详解】解:由题意可得:方程的最简公分母为(x1)(x1),若原分式方程要有增根,则(x1)(x1)0,则x1或x1,故选:AB【考点】本题考查了分式方程的增根,分式方程的增根就是使方程的最简公分母等于0的未知数的值2、ABD【解析】【分析】分三种情况讨论,即可得到这两个三角形不可能都是锐角三角形【
7、详解】解:如图,沿三角形一边上的高剪开即可得到两个直角三角形如图,钝角三角形沿虚线剪开即可得到两个钝角三角形如图,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形因为剪开的边上的两个角是邻补角,不可能都是锐角,故这两个三角形不可能都是锐角三角形综上所述,将一个三角形剪成两三角形,这两个三角形不可能都是锐角三角形故选:ABD【考点】本题主要考查了三角形的分类,理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图3、BC【解析】【分析】根据最简分式的定义:如果一个分式中没有可约的因式,则为最简分式,据此判断即可【详解】解:A、,不是最简分式,可以再约分,不合题
8、意;B、,是最简分式,不能再约分,符合题意;C、,是最简分式,不能再约分,符合题意;D、,不是最简分式,可以再约分,不合题意;故选:BC【考点】本题考查了最简分式的概念,熟记定义是解本题的关键4、BD【解析】【分析】根据无理数的概念,逐一判断选项即可【详解】A. 是分数,是有理数,不符合题意;B. 是无理数,符合题意;C. 是有限小数,是有理数,不符合题意;D. 是无理数,符合题意故选BD【考点】本题主要考查无理数的概念,掌握“无限不循环小数,是无理数”,是解题的关键5、ACD【解析】【分析】利用全等三角形的判定对各个选项逐个判断即可得出结论【详解】解:A、利用判断出,点在线段的垂直平分线上,
9、符合题意;B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;C、利用判断出,点在线段的垂直平分线上,符合题意;D、利用判断出,点在线段的垂直平分线上,符合题意;故选:ACD【考点】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判定方法是解本题的关键三、填空题1、【解析】【分析】把方程变形为,根据方程没有实数根可得,解不等式即可【详解】解:由得,有意义,且,方程没有实数根,即,故答案为:【考点】本题考查了二次根式的性质,解题关键是利用二次根式的非负性确定的取值范围2、123【解析】【分析】根据折叠前后对应角相等和三角形内角和定理可得BAD=BAC=
10、133,ACE=ACB=29,再求出DAC,根据三角形外角的性质可求得m【详解】解:,BAC=180-18-29=133,沿直线AB翻折后能与重合,沿直线AC翻折后能与重合,BAD=BAC=133,ACE=ACB=29,DAC=360-BAD-BAC=94,CFD=ACE+DAC=29+94=123,即m=123,故答案为:123【考点】本题考查三角形内角和定理和外角定理,折叠的性质理解折叠前后对应角相等是解题关键3、【解析】【分析】根据定义新运算公式和二次根式的乘法公式计算即可【详解】解:根据题意可得故答案为:【考点】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法
11、公式是解决此题的关键4、9【解析】【分析】在RtABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长【详解】在RtABC中:CAB90,BC17米,AC8米,AB15(米),CD10(米),AD6(米),BDABAD1569(米),答:船向岸边移动了9米,故答案为:9【考点】本题考查了勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用5、100【解析】【分析】先根据EC=EACAE=40得出C=40,再由三角形外角的性质得出AED的度数,利用平行线的性质即可得出结论【详解】
12、EC=EA,CAE=40,C=CAE=40,DEA是ACE的外角,AED=C+CAE=40+40=80,ABCD,BAE+AED=180BAE =100【考点】本题考查的是等边对等角,三角形的外角,平行线的性质,熟知两直线平行同旁内角互补是解答此题的关键四、解答题1、(1)见解析;(2)【解析】【分析】(1)根据平行可得DBE90,再由HL定理证明直角三角形全等即可;(2)构造,利用矩形性质和勾股定理即可求出AE长【详解】(1)ACBE,CDBE180DBE180C 1809090ABC和DEB都是直角三角形点D为BC的中点,ACDBABDE,RtABCRtDEB(HL) (2)过程如下:连接
13、AE、过A点作AHBE,C90,DBE90,AH=BC=4, ,在中,【考点】本题主要考查了直角三角形全等的判定和勾股定理解三角形,解题关键是构造直角三角形,利用用平行线间的距离处处相等得线段AH=BC,从而利用勾股定理求AE2、 (1);(2)【解析】【分析】(1)首先化简二次根式,之后进行实数的加减运算即可;(2)首先化简二次根式、计算零次幂,去绝对值,最后进行实数加减运算即可(1)解:原式;(2)解:原式【考点】本题主要考查实数的运算,掌握二次根式的化简、零次幂运算、绝对值的性质是解题的关键3、作图见解析.【解析】【详解】试题分析: 因为5=1+4,所以只需作出以1和2为直角边的直角三角
14、形,则其斜边的长即是然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可试题解析:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.4、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分,(2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出5、(1),;(2)【解析】【分析】(1)移项整理后,利用平方根的性质开方求解,并化简即可;(2)移项整理后,利用立方根的性质开方求解即可【详解】解:(1),;(2),【考点】本题考查解利用平方根和立方根的性质解方程,掌握平方根与立方根的基本性质,熟练利用整体思想是解题关键