收藏 分享(赏)

2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx

上传人:a**** 文档编号:696720 上传时间:2025-12-13 格式:DOCX 页数:25 大小:356.60KB
下载 相关 举报
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第1页
第1页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第2页
第2页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第3页
第3页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第4页
第4页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第5页
第5页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第6页
第6页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第7页
第7页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第8页
第8页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第9页
第9页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第10页
第10页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第11页
第11页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第12页
第12页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第13页
第13页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第14页
第14页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第15页
第15页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第16页
第16页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第17页
第17页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第18页
第18页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第19页
第19页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第20页
第20页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第21页
第21页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第22页
第22页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第23页
第23页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第24页
第24页 / 共25页
2022年人教版八年级数学上册第十二章全等三角形定向攻克试卷(解析版含答案).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、八年级数学上册第十二章全等三角形定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组的两个图形属于全等图形的是()ABCD2、如图,ABC中,已知B=C,点E,F,P分别是AB,AC,BC上的

2、点,且BE=CP,BP=CF,若A=112,则EPF的度数是()A34B36C38D403、有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么OABOCD理由是()A边角边B角边角C边边边D角角边4、如图,ABCADE,B=80,C=30,DAC=35,则EAC的度数为()A40B30C35D255、如图,已知是的角平分线,是的垂直平分线,则的长为()A6B5C4D6、已知,则为()A锐角三角形B钝角三角形C直角三角形D以上都有可能7、

3、作的平分线时,以O为圆心,某一长度为半径作弧,与OA,OB分别相交于C,D,然后分别以C,D为圆心,适当的长度为半径作弧使两弧在的内部相交于一点,则这个适当的长度()A大于B等于C小于D以上都不对8、如图,在ABC和DEF中,ABDE,ABDE,运用“SAS”判定ABCDEF,需补充的条件是()AACDFBADCBECFDACBDFE9、 “经过已知角一边上的一点作“个角等于已知角”的尺规作图过程如下:已知:如图(1),AOB和OA上一点C求作:一个角等于AOB,使它的顶点为C,一边为CA作法:如图(2),(1)在0A上取一点D(ODOC),以点O为圆心,OD长为半径画弧,交OB于点E;(2)

4、以点C为圆心,OD长为半径画弧,交CA于点F,以点F为圆心,DE长为半径画弧,两弧交于点C;(3)作射线CC所以CCA就是所求作的角此作图的依据中不含有()A三边分别相等的两个三角形全等B全等三角形的对应角相等C两直线平行同位角相等D两点确定一条直线10、如图所示,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A按顺时针方向旋转90后得到AFB,连接EF,有下列结论:BEDC;BAFDAC;FAEDAE;BFDC其中正确的有()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、ABC中,BAC:ACB:ABC=4:3:2,且ABCD

5、EF,则DEF=_度2、如图,的三边 的长分别为,其三条角平分线交于点,则=_3、如图是由4个相同的小正方形组成的网格图,其中1+2=_4、如图,在和中,直线交于点M,连接以下结论:;平分其中正确的是_(填序号)5、如图所示,在中,D是的中点,点A、F、D、E在同一直线上请添加一个条件,使(不再添其他线段,不再标注或使用其他字母),并给出证明你添加的条件是_三、解答题(5小题,每小题10分,共计50分)1、如图,点B、C、D在同一直线上,ABC、ADE是等边三角形,CE5,CD2(1)证明:ABDACE;(2)求ECD的度数;(3)求AC的长2、已知ABC与ADE均为等腰直角三角形,且BACD

6、AE90,点D在直线BC上(1)如图1,当点D在CB延长线上时,求证:BECD;(2)如图2,当D点不在直线BC上时, BE、CD相交于M,直接写出CME的度数;求证:MA平分CME3、如图1,点P、Q分别是边长为4cm的等边三角形ABC的边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s(1)连接AQ、CP交于点M,则在P,Q运动的过程中,证明;(2)会发生变化吗?若变化,则说明理由,若不变,则求出它的度数;(3)P、Q运动几秒时,是直角三角形?(4)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则变化吗?若变化说明理由

7、,若不变,则求出它的度数。4、如图,在四边形ABCD中,AB=AD,AC平分BCD,AEBC于E,AFCD交CD的延长线于F(1)求证:ABEADF;(2)若BC=8cm,DF=3cm,求CD的长5、如图,在五边形ABCDE中,AB=CD,ABC=BCD,BE,CE分别是ABC,BCD的角平分线(1)求证:ABEDCE;(2)当A=80,ABC=140,时,AED=_度(直接填空)-参考答案-一、单选题1、D【解析】【分析】根据全等图形的定义,逐一判断选项,即可【详解】解:A、两个图形不能完全重合,不是全等图形,不符合题意,B.两个图形不能完全重合,不是全等图形,符合题意,C.两个图形不能完全

8、重合,不是全等图形,不符合题意,D.两个图形能完全重合,是全等图形,不符合题意,故选D【考点】本题主要考查全等图形的定义,熟练掌握“能完全重合的两个图形,是全等图形”是解题的关键2、A【解析】【分析】由三角形内角和定理可得B=C=34,由EBPPCF可得EPB=PFC,再由三角形外角的性质便可解答;【详解】解:BAC中,B=C,A=112,则B=C=34,EBP和PCF中:BE=CP,EBP=PCF,BP=CF,EBPPCF(SAS),EPB=PFC,BPF=EPB+EPF=C+PFC,EPF=C=34,故选:A【考点】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质;掌握

9、全等三角形的判定定理和性质是解题关键3、A【解析】【详解】解:根据SAS得:OABODC故选A.4、C【解析】【分析】根据三角形的内角和定理列式求出BAC,再根据全等三角形对应角相等可得DAE=BAC,然后根据EAC=DAE-DAC代入数据进行计算即可得解【详解】解:B=80,C=30,BAC=180-80-30=70,ABCADE,DAE=BAC=70,EAC=DAE-DAC,=70-35,=35故选C【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键5、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得

10、CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.6、C【解析】【分析】根据A和B的度数可得与互余,从而得出为直角三角形【详解】解:,即与互余,则为直角三角形,故选C【考点】此题考查的是直角三角形的判定,掌握有两个内角互余的三角形是直角三角形

11、是解决此题的关键7、A【解析】【分析】根据作已知角的角平分线的方法即可判断【详解】因为分别以C,D为圆心画弧时,要保证两弧在的内部交于一点,所以半径应大于,故选:A【考点】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)8、C【解析】【分析】证出ABCDEF,由SAS即可得出结论【详解】解:补充BECF,理由如下:ABDE,ABCDEF,若要利用SAS判定,B、D选项不符合要求,若A:AC=DF,构成的是SSA,不能证明三角形全等,A选项不符合要求,C选项:BE=CF,BECF,BC

12、EF,在ABC和DEF中,ABCDEF(SAS),故选:C【考点】此题主要考查全等三角形的判定,解题的关键是熟知“SAS”的判定的特点9、C【解析】【分析】根据题意知,作图依据有全等三角形的判定定理SSS,全等三角形的性质和两点确定一条直线,直接判断即可【详解】解:由题意可得:由全等三角形的判定定理SSS可以推知EODGCF,故A正确;结合该全等三角形的性质对应角相等,故B正确;作射线CG,利用两点确定一条直线,故D正确;故选:C【考点】本题考查作一个角等于已知角和三角形全等的判定与性质,解题关键是明确作图原理,准确进行判断10、C【解析】【分析】利用旋转性质可得ABFACD,根据全等三角形的

13、性质一一判断即可【详解】解:ADC绕A顺时针旋转90后得到AFB,ABFACD,BAFCAD,AFAD,BFCD,故正确,EAFBAF+BAECAD+BAEBACDAE904545DAE故正确无法判断BECD,故错误,故选:C【考点】本题考查了旋转的性质:旋转前后两图形全等,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题1、40【解析】【分析】设BAC为4x,则ACB为3x,ABC为2x,由BAC+ACB+ABC=180得4x+3x+2x=180.【详解】解:设BAC为4x,则ACB为3x,ABC为2xBAC+ACB+ABC=1804x+3x+2x=180,解得x=20ABC=2x=

14、40ABCDEFDEF=ABC=40故答案为40【考点】考核知识点:全等三角形性质.理解全等三角形性质是关键.2、【解析】【分析】首先过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,由OA,OB,OC是ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由ABC的三边AB、BC、CA长分别为40、50、60,即可求得SABO:SBCO:SCAO的值【详解】解:过点O作ODAB于点D,作OEAC于点E,作OFBC于点F,OA,OB,OC是ABC的三条角平分线,OD=OE=OF,ABC的三边AB、BC、CA长分别为40、50、60,SABO:SBCO:SCAO=(ABOD

15、):(BCOF):(ACOE)=AB:BC:AC=40:50:60=故答案为:【考点】此题考查了角平分线的性质此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用3、180或180度【解析】【分析】由全等三角形性质和邻补角定义可求得【详解】解:如图:根据题意得BC=DE,E=B=90,AB=AE,所以ABCAED,所以1=ACB又因为2+ACB=180,所以,2+1=180故答案为:180【考点】本题考核知识点全等三角形性质和邻补角定义4、【解析】【分析】由SAS证明AOCBOD得出OAC=OBD,AC=BD,正确; 由全等三角形的性质得出OAC=OBD,由三角形的外角性质得:AMB+O

16、BD=OAC+AOB,得出AMB=AOB=,可得正确; 作OGAM于G,OHDM于H,利用全等三角形的对应高相等得出OG=OH,由角平分线的判定方法得AMO=DMO,假设OM平分BOC,则可求出AOM=DOM,由全等三角形的判定定理可得AMODMO,得AO=OD,而OC=OD,所以OA=OC,而OAOC,故错误;即可得出结论【详解】解:AOB=COD=, AOB+BOC=COD+BOC, 即AOC=BOD, 在AOC和BOD中, AOCBOD(SAS), OAC=OBD,AC=BD, 故正确; 由三角形的内角和定理得: AMB+OBD=OAC+AOB, OAC=OBD, AMB=AOB=, ,

17、故正确; 作OGAM于G,OHDM于H,如图所示, AOCBOD, 结合全等三角形的对应高可得:OG=OH, MO平分AMD, AMO=DMO, 假设OM平分BOC,则BOM=COM, AOB=COD, AOB+BOM=COD+COM, 即AOM=DOM, 在AMO与DMO中, , AMODMO(ASA), OA=OD, OC=OD, OA=OC, 而OAOC,故错误; 正确的个数有3个; 故答案为:【考点】本题属于三角形的综合题,是中考填空题的压轴题,本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识,证明三角形全等是解题的关键5、ED=FD(答案不唯一,E=CFD或D

18、BE=DCF)【解析】【分析】根据三角形全等的判定方法SAS或AAS或ASA定理添加条件,然后证明即可【详解】解:D是的中点,BD=DC若添加ED=FD在BDE和CDF中,BDECDF(SAS);若添加E=CFD在BDE和CDF中,BDECDF(AAS);若添加DBE=DCF在BDE和CDF中,BDECDF(ASA);故答案为:ED=FD(答案不唯一,E=CFD或DBE=DCF)【考点】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键三、解答题1、 (1)见解析(2)60(3)3【解析】【分析】(1)根据等边三角形的性质利用SAS证明;(2)利用全等三角形的性质得到B=AC

19、E=60,计算即可得到答案;(3)利用全等的性质得到BD的长,再由等边三角形的性质,即可得到AC的长(1)证明:ABC和ADE是等边三角形,AD=AE,AB=AC,BAC=DAE=ACB=60,BAD=CAE,ABDACE;(2)解:ABDACE,B=ACE=60,DCE=180ACBACE=60;(3)解:ABDACE,BD=CE=5,BC=BDCD=52=3,AC=BC=3【考点】此题考查了全等三角形的判定及性质,熟记全等三角形的几种判定定理:SSS,SAS,ASA,AAS,HL,并熟练应用是解题的关键2、 (1)见解析(2)90;见解析【解析】【分析】(1)先推出CAD=BAE,C=AB

20、C=45,然后证明CADBAE得到ABE=C=45,则EBC=ABE+ABC=90,即EBCD;(2)同理可证BAECAD,得到ABE=ACD,再由EMC=EBC+BCD,得到EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,由BAECAD,得到AG=AF,证明RtAGMRtAFM得到AMG=AMF,即AM平分EMC(1)解:ABC与ADE均为等腰直角三角形,且BACDAE90,AB=AC,AE=AD,DAE+DAB=CAB+DAB,CAD=BAE,C=ABC=45,CADBAE(SAS),ABE=C=45,EBC=ABE+ABC=90,即EBCD;(2)

21、解:同理可证BAECAD,ABC=ACB=90,ABE=ACD,EMC=EBC+BCD,EMC=ABE+ABC+ACD+BCD=90;如图,过点A作AGBE于G,AFCD于F,BAECAD,AG=AF,在RtAGM和RtAFM中,RtAGMRtAFM(HL),AMG=AMF,即AM平分EMC【考点】本题主要考查了全等三角形的性质与判定,三角形外角的性质,熟知全等三角形的性质与判定条件是解题的关键3、(1)见解析;(2)CMQ=60,不变;(3)当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120,不变【解析】【分析】(1)利用SAS可证全等;(2)先证ABQCAP,得出BAQ=ACP,通过

22、角度转化,可得出CMQ=60;(3)存在2种情况,一种是PQB=90,另一种是BPQ=90,分别根据直角三角形边直角的关系可求得t的值;(4)先证PBCACQ,从而得出BPC=MQC,然后利用角度转化可得出CMQ=120【详解】(1)证明:在等边三角形ABC中,AB=AC,B=CAP=60又由题中“点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s.”可知:AP=BQ;(2)CMQ=60不变等边三角形中,AB=AC,B=CAP=60又由条件得AP=BQ,ABQCAP(SAS),BAQ=ACP,CMQ=ACP+CAM=BAQ+CAM=BAC=60;(3)设时间为t,则AP=BQ=t,

23、PB=4-t,当PQB=90时,B=60,PB=2BQ,得4-t=2t,t=;当BPQ=90时,B=60,BQ=2BQ,得t=2(4-t),t=;当第秒或第秒时,PBQ为直角三角形;(4)CMQ=120不变,在等边三角形中,AB=AC,B=CAP=60,PBC=ACQ=120,又由条件得BP=CQ,PBCACQ(SAS),BPC=MQC,又PCB=MCQ,CMQ=PBC=180-60=120【考点】本题考查动点问题中三角形的全等,解题关键是找出图形中的全等三角形,利用全等三角形的性质进行角度转化,得出需要的结论4、 (1)证明见解析(2)2cm【解析】【分析】(1)由角平分线的性质可知,证明,

24、进而结论得证;(2)由,可得,证明,则,根据,计算求解即可(1)证明:AC平分BCD,AEBC,AFCD,在和中,(2)解:,在和中,的长为2cm【考点】本题考查了角平分线的性质,全等三角形的判定与性质等知识解题的关键在于找出三角形全等的条件5、 (1)见解析;(2)100【解析】【分析】(1)根据ABC=BCD,BE,CE分别是ABC,BCD的角平分线,可得ABE=DCE,CBE=BCE,推出BE=CE,由此利用SAS证明ABEDCE;(2)根据三角形全等的性质求出D的度数,利用公式求出五边形的内角和,即可得到答案(1)证明:ABC=BCD,BE,CE分别是ABC,BCD的角平分线,ABE=CBE=ABC,BCE=DCE=BCD,ABE=DCE,CBE=BCE,BE=CE,又AB=CD,ABEDCE(SAS);(2)ABEDCE,D=A=80,五边形ABCDE的内角和为,AED=,故答案为:100【考点】此题考查了全等三角形的判定及性质,多边形内角和计算,正确掌握全等三角形的判定及性质定理是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1