1、人教版九年级数学上册第二十二章二次函数综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果y=(m-2)x是关于x的二次函数,则m=()A-1B2C-1或2Dm不存在2、已知二次函数(其中是自变量
2、)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是()ABCD3、二次函数的图象的对称轴是()ABCD4、如图,在平面直角坐标系中,抛物线yax2+bx+c(a0)与x轴交于点A(1,0),顶点坐标为(1,m),与y轴的交点在(0,4),(0,3)之间(包含端点),下列结论:abc0;4ac-b20;ac0;1a;关于x的方程ax2+bx+c+2m0没有实数根其中正确的结论有()A1个B2个C3个D4个5、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD6、如图,抛物线与抛物线交于点,且它们分别与轴交于点、过点
3、作轴的平行线,分别与两抛物线交于点、,则以下结论:无论取何值,总是负数;抛物线可由抛物线向右平移3个单位,再向下平移3个单位得到;当时,随着的增大,的值先增大后减小;四边形为正方形其中正确的是()ABCD7、下列函数中,是二次函数的是()Ay6x2+1By6x+1CyDy+18、如图,抛物线的对称轴为直线,若关于的一元二次方程(为实数)在的范围内有解,则的取值错误的是()ABCD9、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD10、在平面直角坐标系中,对于点,若,则称点P为“同号点”,下列函数的图象上不存在“同号点”的是()AB
4、CD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是_2、对于任意实数,抛物线与轴都有公共点则的取值范围是_3、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式)4、某超市购进一批单价为8元的生活用品,如果按每件9元出售,那么每天可销售20件经调查发现,这种生活用品的销售单价每提高1元,其销售量相应减少
5、4件,那么将销售价定为_元时,才能使每天所获销售利润最大5、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_三、解答题(5小题,每小题10分,共计50分)1、综合与探究如图1,在平面直角坐标系xOy中,抛物线W的函数表达式为y=x2+x+4抛物线W与x轴交于A,B两点(点B在点A的右侧,与y轴交于点C,它的对称轴与x轴交于点D,直线l经过C、D两点(1)求A、B两点的坐标及直线l的函数表达式(2)将抛物线W沿x轴向右平移得到抛物线W,设抛物线W的对称轴与直线l交于点F,当ACF为直角三角形时,求点F的坐标,
6、并直接写出此时抛物线W的函数表达式(3)如图2,连接AC,CB,将ACD沿x轴向右平移m个单位(0m5),得到ACD设AC交直线l于点M,CD交CB于点N,连接CC,MN求四边形CMNC的面积(用含m的代数式表示)2、某工厂生产并销售A,B两种型号车床共14台,生产并销售1台A型车床可以获利10万元;如果生产并销售不超过4台B型车床,则每台B型车床可以获利17万元,如果超出4台B型车床,则每超出1台,每台B型车床获利将均减少1万元设生产并销售B型车床台(1)当时,完成以下两个问题:请补全下面的表格:A型B型车床数量/台_每台车床获利/万元10_若生产并销售B型车床比生产并销售A型车床获得的利润
7、多70万元,问:生产并销售B型车床多少台?(2)当014时,设生产并销售A,B两种型号车床获得的总利润为W万元,如何分配生产并销售A,B两种车床的数量,使获得的总利润W最大?并求出最大利润3、某宾馆共有80间客房宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足yx42(x168)若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?4、如图,在平面直角
8、坐标系中,已知抛物线与轴交于,两点,与轴交于点,连接(1)求抛物线的解析式;(2)点在抛物线的对称轴上,当的周长最小时,点的坐标为_;(3)点是第四象限内抛物线上的动点,连接和求面积的最大值及此时点的坐标;(4)若点是对称轴上的动点,在抛物线上是否存在点,使以点、为顶点的四边形是平行四边形?若存在,请直接写出点的坐标;若不存在,请说明理由5、如图1,排球场长为18m,宽为9m,网高为2.24m队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m即BA2.88m这时水平距离OB7m,以直线OB为x轴,直线OC为y轴,建立平面
9、直角坐标系,如图2(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围)并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:取1.4)-参考答案-一、单选题1、A【解析】【分析】根据二次函数的定义知m2-m=2,且m-2,解出即可.【详解】依题意,解得m=-1,故选:A.【考点】此题主要考查二次函数的定义,需要注意二次项系数不为零.2、D【解析】【分析】由抛物线与轴没有公共点,可得,求得,求出抛物线的对称轴为
10、直线,抛物线开口向上,再结合已知当时,随的增大而减小,可得,据此即可求得答案.【详解】,抛物线与轴没有公共点,解得,抛物线的对称轴为直线 ,抛物线开口向上,而当时,随的增大而减小,实数的取值范围是,故选D【考点】本题考查了二次函数图象与x轴交点问题,抛物线的对称轴,二次函数图象的增减性,熟练掌握和灵活运用相关知识是解题的关键.3、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键4、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对
11、称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线yax2+bx+c(a0)的图象开口向上,a0抛物线yax2+bx+c(a0)的对称轴在y轴的右侧, 又抛物线yax2+bx+c(a0)的图象交y轴的负半轴, ,故正确,符合题意;抛物线yax2+bx+c(a0)的图象与x轴有两个交点,即,故错误,不符合题意;抛物线的顶点坐标为(1,m),与x轴的一个交点为A(-1,0)对称轴为x=1抛物线与x轴的另一个交点为(3,0)当x=3时,y=,ac =0,故错误,不符合题意;当x=-1时,y=a-b+c=0,则c=-a+b, 由-4c-3,得-4-a+b-3,图象的对称轴为x
12、=1,故b=-2a,得-4-3a-3,故1a正确,符合题意;y=ax2+bx+c的顶点为(1,m),即当x=1时y有最小值m而y=m-2和y=ax2+bx+c无交点,即方程ax2+bx+c=m-2无解,关于x的方程ax2+bx+c+2-m=0没有实数根,故正确,符合题意故选:C【考点】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征5、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,
13、y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键6、B【解析】【分析】根据非负数的相反数或者直接由图像判断即可;先求抛物线的解析式,再根据抛物线的顶点坐标,判断平移方向和平移距离即可判断;先根据题意得出时,观察图像可知,然后计算,进而根据一次函数的性质即可判断;分别计算出的坐标,根据正方形的判定定理进行判断即可【详解】,无论取何值,总是负数,故正确;抛物线与抛物线交于点,即,解得,抛物线,抛物线的顶点,抛物线的顶点为,将向右平移3个单位,再向下平移3个
14、单位即为,即将抛物线向右平移3个单位,再向下平移3个单位可得到抛物线,故正确;,将代入抛物线,解得,将代入抛物线,解得,从图像可知抛物线的图像在抛物线图像的上方,当,随着的增大,的值减小,故不正确;设与轴交于点,由可知,当时,即,四边形是平行四边形,四边形是正方形,故正确,综上所述,正确的有,故选:B【考点】本题考查了二次函数图像与性质,一次函数的性质,平移,正方形的判定定理,解题的关键是综合运用以上知识7、A【解析】【分析】根据二次函数的定义求解【详解】解:A是二次函数,故本选项符合题意;B是一次函数,不是二次函数,故本选项不符合题意;C是反比例函数,不是二次函数,故本选项不符合题意;D等式
15、的右边是分式,不是整式,不是二次函数,故本选项不符合题意;故选:A【考点】本题考查二次函数的基础知识,熟练掌握二次函数的意义是解题关键8、A【解析】【分析】已知抛物线的对称轴,可求出m=4,进而求出抛物线的解析式;把关于x的一元二次方程有解的问题,转化为抛物线与直线y=t的交点问题,可求出t的取值范围;最后将所给的四个选项逐一与t的范围加以对照,即可得出正确答案【详解】解:抛物线的对称轴为直线x=2,解得,m=4抛物线的解析式为当x=2时,抛物线的顶点坐标为(2,4)当x=1时,当x=3时,关于x的一元二次方程是,方程在的范围内有解,抛物线与直线y=t在范围内有公共点,如图所示故选:A【考点】
16、本题考查了二次函数的对称轴、顶点坐标、与一元二次方程的关系等知识点,熟知二次函数的对称轴、顶点坐标的计算方法是解题的基础,而熟知二次函数与一元二次方程的互相转化是解题的关键9、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正方形ABCD边长为4,AE=BF=CG=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向
17、上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键10、C【解析】【分析】由题意,图象经过第一和第三象限的函数都是满足条件的,由此判断即可【详解】解:由题意,图象经过第一和第三象限的函数都是满足条件的,函数的图象在二、四象限,不满足条件,故选:C【考点】本题考查了反比函数的性质,一次函数的性质,二次函数的性质可以用特值法进行快速的排除二、填空题1、【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平
18、移后的函数关系式【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),解得:t=1或t=-1(舍去),平移后的顶点坐标为(1,3),移动后抛物线的解析式是故答案为:【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型2、【解析】【分析】由题意易得,则有,然后设,由无论a取何值时,抛物线与轴都有公共点可进行求解【详解】解:由抛物线与轴都有公共点可得:,即,设,则,要使对于任意实数,抛物线与轴都有公共点,则需满足小于等于的最小值即可,即的最小值为,;故答案为【考点】本题主要考查二次函数的综合,熟练掌握二次函数的综合是解题的关键3、【解
19、析】【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,设,则,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为【考点】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.4、11【解析】【分析】根据题意列出二次函数关系式,根据二次函数的性质即可得到结论【详解】解:设销售单价定为元,每天所获利润为元,则,所以将销售定价定为11元时,才能使每天所获销售利润最大,故答案为11【考点】本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数
20、关系式,利用二次函数的性质解答5、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值【详解】A、B的纵坐标一样,A、B是对称的两点,对称轴,即,b=-4抛物线解析式为:抛物线顶点(2,-3)满足题意n的最小值为4,故答案为:4【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴三、解答题1、(1)点A坐标为(3,0),点B的坐标为(7,0),y=2x+4;(2) 点F的坐标为(5,6),y=x2+x;(3) 四边形CMNC的面积为m2【解析】【分析】根据抛物线的
21、解析式,令y0即可求出两点的坐标根据抛物线的解析式可分别求出C,D两点的坐标,再用待定系数法即可求出直线的表达式根据题意,利用角的等量关系可以得到13,进而得到tan1tan3,根据三角函数的计算方法列出等式,根据一次函数的解析式设点的坐标为(xF,2xF4),将各线段的长度代入等式即可求出点F的坐标,再根据平移的法则即可求出w的表达式根据平移,可以得到点C,A,D的坐标,再根据待定系数法可以得到直线AC,BC,CD的解析式,根据交点的计算方法列方程组可以求得点M,N的坐标,根据平移的定义和平行四边形的定义可知四边形CMNC是平行四边形,再根据平行四边形面积的计算方法可以得到平行四边形CMNC
22、的面积【详解】(1)当y0时,x240,解得x13,x27,点A坐标为(3,0),点B的坐标为(7,0)抛物线w的对称轴为直线x2,点D坐标为(2,0)当x0时,y4,点C的坐标为(0,4)设直线l的表达式为ykxb,解得直线l的解析式为y2x4;(2)抛物线w向右平移,只有一种情况符合要求,即FAC90,如图此时抛物线w的对称轴与x轴的交点为G,12902390,13,tan1tan3,=设点F的坐标为(xF,2xF4), ,解得xF5,2xF46,点F的坐标为(5,6),此时抛物线w的函数表达式为yx2x;(3)由平移可得:点C,点A,点D的坐标分别为C(m,4),A(3m,0),D(2m
23、,0),CCx轴,CDCD,可用待定系数法求得直线AC的表达式为yx4m,直线BC的表达式为yx4,直线CD的表达式为y2x2m4,分别解方程组和 解得和点M的坐标为(m,m4),点N的坐标为(m, m4),yMyNMNx轴,CCx轴,CCMNCDCD,四边形CMNC是平行四边形,Sm4(m4)m2【考点】本题主要考查二次函数的图象与性质、一次函数的解析式以及二次函数的应用,数形结合思想是关键2、(1),;10台;(2)分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【解析】【分析】(1)由题意可知,生产并销售B型车床x台时,生产A型车床(
24、14-x)台,当时,每台就要比17万元少()万元,所以每台获利,也就是()万元;根据题意可得根据题意:然后解方程即可;(2)当04时,W,当414时,W,分别求出两个范围内的最大值即可得到答案.【详解】解:(1)当时,每台就要比17万元少()万元所以每台获利,也就是()万元补全表格如下面:A型B型车床数量/台每台车床获利/万元10此时,由A型获得的利润是10()万元,由B型可获得利润为万元,根据题意:, ,014, ,即应产销B型车床10台;(2)当04时,当04A型B型车床数量/台每台车床获利/万元1017利润此时,W,该函数值随着的增大而增大,当取最大值4时,W最大1168(万元);当41
25、4时,当414A型B型车床数量/台每台车床获利/万元10利润则W,当或时(均满足条件414),W达最大值W最大2170(万元),W最大2 W最大1, 应分配产销A型车床9台、B型车床5台;或产销A型车床8台、B型车床6台,此时可获得总利润最大值170万元【考点】本题主要考查了一元二次方程的实际应用,一次函数和二次函数的实际应用,解题的关键在于能够根据题意列出合适的方程或函数关系式求解.3、(1)zx+122(x168);(2)应将房间定价确定为260元时,获得利润最大,最大利润为8767元【解析】【分析】(1)入住房间z(间)等于80减去每天的房间空闲数,列式并化简即可;(2)设利润为w元,由
26、题意得w关于x的二次函数关系式,根据二次函数的对称性及问题实际可得答案【详解】解:(1)由题意得:z80(x42)x+122,入住房间z(间)与定价x(元/间)之间关系式为zx+122(x168);(2)设利润为w元,由题意得:w(x+122)x36(x+122)4000x2+131x8392,当x262时,w最大,此时z56.5非整数,不合题意,x260或264时,w最大,让客人得到实惠,x260,w最大2602+13126083928767,应将房间定价确定为260元时,获得利润最大,最大利润为8767元【考点】本题考查了二次函数在实际问题中的应用,理清题中的数量关系、熟练掌握二次函数的性
27、质是解题的关键4、(1);(2);(3)面积最大为,点坐标为;(4)存在点,使以点、为顶点的四边形是平行四边形,,点坐标为,【解析】【分析】(1)将点,代入即可求解;(2)BC与对称轴的交点即为符合条件的点,据此可解;(3)过点作轴于点,交直线与点,当EF最大时面积的取得最大值,据此可解;(4)根据平行四边形对边平行且相等的性质可以得到存在点N使得以B,C,M,N为顶点的四边形是平行四边形.分三种情况讨论.【详解】解:(1) 抛物线过点,解得:抛物线解析式为(2) 点,抛物线对称轴为直线点在直线上,点,关于直线对称,当点、在同一直线上时,最小抛物线解析式为,C(0,-6),设直线解析式为,解得
28、:直线:,故答案为:(3)过点作轴于点,交直线与点,设,则,当时,面积最大为,此时点坐标为(4)存在点,使以点、为顶点的四边形是平行四边形设N(x,y),M(,m),四边形CMNB是平行四边形时,CMNB,CBMN,x= ,y= = ,N(,);四边形CNBM是平行四边形时,CNBM,CMBN,x=,y=N(,);四边形CNMB是平行四边形时,CBMN,NCBM,x=,y=N(,);点坐标为(,),(,),(,)【考点】本题考查二次函数与几何图形的综合题,熟练掌握二次函数的性质,灵活运用数形结合思想得到坐标之间的关系是解题的关键5、(1)这次发球过网,但是出界了,理由详见解析;(2)发球点O在
29、底线上且距右边线0.1米处【解析】【分析】(1)求出抛物线表达式,再确定x9和x18时,对应函数的值即可求解;(2)当y0时,y(x7)2+2.880,解得:x19或5(舍去5),求出PQ68.4,即可求解【详解】(1)设抛物线的表达式为:ya(x7)2+2.88,将x0,y1.9代入上式并解得:a,故抛物线的表达式为:y(x7)2+2.88;当x9时,y(x7)2+2.882.82.24,当x18时,y(x7)2+2.880.640,故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ、OQ交于点Q,在RtOPQ中,OQ18117,当y0时,y(x7)2+2.880,解得:x19或5(舍去5),OP19,而OQ17,故PQ68.4,98.40.50.1,发球点O在底线上且距右边线0.1米处.【考点】此题考查求二次函数的解析式,利用自变量求对应的函数值的计算,勾股定理解直角三角形,二次函数的实际应用,正确理解题意,明确“能否过网”,“是否出界”词语的含义找到解题的方向是解答此题的关键.