1、九年级数学上册第二十一章一元二次方程综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、设,是方程的两个实数根,则的值为()A2020B2021C2022D20232、一元二次方程的二次项系数、一次项
2、系数分别是A3,B3,1C,1D3,63、已知关于x的一元二次方程x2+2x+m2=0有两个实数根,m为正整数,且该方程的根都是整数,则符合条件的所有正整数m的和为()A6B5C4D34、若关于x的一元二次方程x2ax0的一个解是1,则a的值为()A1B2C1D25、不论x、y为什么实数,代数式的值()A可为任何实数B不小于7C不小于2D可能为负数6、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-27、已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的底边长为()A2B4C8D2或48、元二次方程2x22x10的根的情况为()A有两个相等的实数根B有两个不
3、相等的实数根C只有一个实数根D没有实数根9、目前以等为代表的战略性新兴产业蓬勃发展某市2019年底有用户2万户,计划到2021年底全市用户数累计达到8.72万户设全市用户数年平均增长率为,则值为()ABCD10、在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A(502x)(402x)3000B(50+2x)(40+2x)3000C(50x)(40x)3000D(50+x)(40+x)3000第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为创建“国
4、家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米设绿地宽为x米,根据题意,可列方程为_2、若关于x的一元二次方程有两个不相等的实数根,则m的值可以是_(写出一个即可)3、若两个最简二次根式与是同类二次根式,则=_4、关于的一元二次方程有一个根是,则的值是_5、若x1、x2是一元二次方程x22x0的两根,则x12+x22的值是_三、解答题(5小题,每小题10分,共计50分)1、用适当的方法解下列方程:(1)(2)2、一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)
5、与售价x(元/千克)满足一次函数关系,对应关系如下表:售价x(元/千克)50607080销售量y(千克)100908070(1)求y与x的函数关系式;(2)该批发商若想获得4000元的利润,应将售价定为多少元?3、(1)计算:(2)解方程:2(x3)2504、解下列一元二次方程:(1);(2)5、如果方程与方程有且只有一个公共根,求a的值-参考答案-一、单选题1、B【解析】【分析】由题意根据一元二次方程的解及根与系数的关系可得出,将其代入中即可得出答案【详解】解:,是方程的两个实数根,=2022-1=2021故选:B【考点】本题考查根与系数的关系以及一元二次方程的解,根据一元二次方程的解及根与
6、系数的关系找出是解题的关键2、A【解析】【分析】根据一元二次方程的定义解答【详解】3x26x+1=0的二次项系数是3,一次项系数是6,常数项是1.故答案选A.【考点】本题考查的知识点是一元二次方程的一般形式,解题的关键是熟练的掌握一元二次方程的一般形式.3、B【解析】【分析】根据一元二次方程根的判别式和一元二次方程的解法结合已知条件进行分析解答即可.【详解】关于x的一元二次方程x2+2x+m2=0有两个实数根,=,解得:,又m为正整数,m=1或2或3,(1)当m=1时,原方程为x2+2x-1=0,此时方程的两根均不为整数,故m=1不符合要求;(2)当m=2时,原方程为x2+2x=0,此时方程的
7、两根分别为0和-2,符合题中要求;(3)当m=3时,原方程为x2+2x+1=0,此时方程的两根都为1,符合题中要求; m=2或m=3符合题意,m的所有符合题意的正整数取值的和为:2+3=5.故选B.【考点】读懂题意,熟知“在一元二次方程中,若方程有两个实数根,则=”是解答本题的关键.4、C【解析】【分析】把x1代入方程x2ax0得1+a0,然后解关于a的方程即可【详解】解:把x1代入方程x2ax0得1+a0,解得a1故选C【考点】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解5、C【解析】【分析】要把代数式进行拆分重组凑完全平方式,来判断其值的范围具体如
8、下:【详解】(x22x1)(y24y4)2(x1)2(y2)22,(x1)20,(y2)20,(x1)2(y2)222,2故选:C【考点】主要利用拆分重组的方法凑完全平方式,把未知数都凑成完全平方式,就能判断该代数式的值的范围要求掌握完全平方公式,并会熟练运用6、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x27、A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件
9、分类讨论边长,即可得出答案【详解】解:x26x+8=0(x4)(x2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A【考点】本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键8、B【解析】【分析】根据方程的系数结合根的判别式,即可得出120,进而即可得出方程2x22x10有两个不相等的实数根【详解】a2,b2,c1,b24ac(2)242(1)120,方程有两
10、个不相等的实数根故选B【考点】本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键9、C【解析】【分析】先用含x的代数式表示出2020年底、2021年底用户的数量,然后根据2019年底到2021年底这三年的用户数量之和=8.72万户即得关于x的方程,解方程即得答案【详解】解:设全市用户数年平均增长率为,根据题意,得:,解这个方程,得:,(不合题意,舍去)x的值为40%故选:C【考点】本题考查了一元二次方程的应用之增长率问题,属于常考题型,正确理解题意、找准相等关系是解题的关键10、B【解析】【分析】根据题意表示出矩形挂画的长和宽,再根据长方形的面积公式可得方程【详解】解:
11、设边框的宽为x cm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B【考点】本题主要考查由实际问题抽象出一元二次方程,在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程二、填空题1、x(x+40)=1200【解析】【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程【详解】由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200【考点】考查由实际问题抽象出一元二次
12、方程,解题的关键是明确题意,列出相应的方程2、0(答案不唯一)【解析】【分析】根据一元二次方程根的判别式求出的取值范围,由此即可得出答案【详解】解:由题意得:此一元二次方程根的判别式,解得,则的值可以是0,故答案为:0(答案不唯一)【考点】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键3、-3【解析】【分析】根据同类二次根式的定义可得,由此求解即可【详解】解:两个最简二次根式与是同类二次根式,或,两个根式都是最简根式,时,不符合题意,当a=3时,二次根式有意义且符合题意,故答案为-3【考点】本题考查了同类二次根式的定义和解一元二次方程,熟练掌握同类二次根式的定义是解
13、答本题的关键.化成最简二次根式后,如果被开方式相同,那么这几个二次根式叫做同类二次根式4、1【解析】【分析】把方程的根代入原方程得到,解得k的值,再根据一元二次方程成立满足的条件进行取舍即可【详解】方程是一元二次方程,k+20,即k-2;又0是该方程的一个根,解得,由于k-2,所以,k=1故答案为:1【考点】本题考查了一元二次方程的解解此类题时,要擅于观察已知的是哪些条件,从而有针对性的选择解题方法同时要注意一元二次方程成立必须满足的条件,这是容易忽略的地方5、9【解析】【分析】利用一元二次方程根与系数的关系表示出x1+x22,x1x2,再根据完全平方公式的变形求x12+x22的值即可【详解】
14、解:x1、x2是一元二次方程x22x0的两根,x1+x22,x1x2,则x12+x22(x1+x2)22x1x242()4+59故答案为:9【考点】本题考查一元二次方程根与系数的关系和完全平方公式的变形熟练掌握一元二次方程根与系数的关系和完全平方公式是解题的关键三、解答题1、(1),;(2),【解析】【分析】(1)根据因式分解法求解一元二次方程的性质计算,通过计算即可得到答案;(2)根据公式法求解一元二次方程的性质计算,即可得到答案【详解】(1) ,;(2),【考点】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解2、(1)yx+150(0x90);(2)70
15、【解析】【分析】(1)根据图表中的各数可得出y与x成一次函数关系,从而结合图表的数可得出y与x的关系式(2)根据想获得4000元的利润,列出方程求解即可【详解】(1)设y与x的函数关系式为ykx+b(k0),根据题意得,解得故y与x的函数关系式为yx+150(0x90);(2)根据题意得(x+150)(x20)4000,解得x170,x210090(不合题意,舍去)答:该批发商若想获得4000元的利润,应将售价定为70元【考点】本题考查了一元二次方程的应用,一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,利用待定系数法求出一次函数的解析式与列出方程3、(1);(2)x8或2【解
16、析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案【详解】(1)原式23(1)1+1;(2)2(x3)250(x3)225,则x35,解得:x8或2【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.4、 (1),(2),【解析】【分析】(1)方程整理后得,再运用因式分解法求出方程的解即可;(2)原方程运用配方法求解即可(1)整理得, ,(2) ,【考点】本题主要考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键5、-2【解析】【分析】有且只有一个公共根,建立方程便可求解了【详解】解:有且只有一个公共根当a=-1时两个方程完全相同,故a-1, 当时,代入第一个方程可得1-a+1=0解得:【考点】本题考查根与系数的关系,关键在于有一个公共根的理解,从而建立方程,求得根