1、课时作业A组基础巩固1数列an的通项公式为an则a2a3等于()A70 B28C20 D8答案:C2数列1,3,6,10,15,的递推公式是()A.B.C.D.解析:将数值代入选项验证即可答案:B3已知数列an满足a12,annan1(n2),则a5等于()A240 B120C60 D30解析:逐项代入可求答案:A4若数列an中,a11,an1,则数列an的第4项是()A. B.C. D.解析:a11,an1,a2,a3,a4,故选C.答案:C5数列an满足a11,an12an1(nN*),则a1 000()A1B1 999C1 000 D1解析:a11,a22111,a32111,a4211
2、1,可知an1(nN*),a1 0001.答案:A6数列an中,a1a21,an2an1an,则a4_.解析:由an2an1an,a3a1a22,a4a2a3123.答案:37已知数列an满足:a4n31,a4n10,a2nan,nN*,则a2 017_;a2 014_.解析: 依题意得a2 017a450531,a2 014a21 007a1 007a425210.故分别填1,0.答案:108数列an的通项公式an(1)n,则a3_,a10_,a2n1_.解析:分别用3,10和2n1去代换通项公式中的n,得a3(1)3,a10(1)10,a2n1(1)2n1.答案:9已知数列an中,a12,
3、an13an(nN*),求数列an的通项公式解析:由an13an得3.因此可得3,3,3,3(n2)将上面的n1个式子相乘可得3n1.即3n1,所以ana13n1,又a12,故an23n1.当n1时,a12302也满足,故an23n1.10已知数列an满足a11,an1(nN*),试探究数列an的通项公式解析:法一:将n1,2,3,4依次代入递推公式得a2,a3,a4,又a1,可猜想an.应有an1,将其代入递推关系式验证成立,an.法二:an1,an1an2an2an1.两边同除以2an1an,得.,.把以上各式累加得.又a11,an.故数列an的通项公式为an(nN*)B组能力提升1已知数
4、列an的前n项和Snn3,则a6a7a8a9等于()A729 B387C604 D854解析:a6a7a8a9S9S59353604,故选C.答案:C2数列7,9,11,中,2n1是数列的第_项()An3 Bn2Cn1 Dn解析:an2(n3)1,设2n1是数列的第m项,则2n12(m3)1,解得mn3.答案:A3已知数列an对任意的p,qN*满足apqapaq,且a26,则a10_.解析:apqapaq,a42a212,a82a424,a10a2a830.答案:304已知数列an,a11,a22,anan1an2(n3),则a7_.解析:分别求出a3,a4,a5,a6,即可求a7.答案:115在数列an中,已知a11,Snn2an,求该数列的通项公式解析:因为Snn2an,所以Sn1(n1)2an1 (n2)得anSnSn1n2an(n1)2an1,可得(n21)an(n1)2an1,即(n1)an(n1)an1,故.所以ana11.答案:6已知数列an满足lg(1a1a2an)n(nN*),求数列an的通项公式解析:Sna1a2an,又lg(1a1a2an)n,lg(1Sn)n.Sn10n1.当n1时,a1S19;当n2时,anSnSn1(10n1)(10n11)910n1.当n1时也满足上式,an910n1.