1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中专项攻克试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个
2、平面的是()A正三角形和正方形B正三角形和正六边形C正方形和正六边形D正方形和正八边形2、如图,1、2、3中是ABC外角的是()A1、2B2、3C1、3D1、2、33、如图,已知是ABC的角平分线,是的垂直平分线,则的长为()A6B5C4D4、如图,在ABC中,C90,O为ABC的三条角平分线的交点,ODBC,OEAC,OFAB,点D、E、F分别是垂足,且AB10cm,BC8cm,CA6cm,则点O到边AB的距离为()A2cmB3cmC4cmD5cm5、下列命题的逆命题一定成立的是()对顶角相等;同位角相等,两直线平行;全等三角形的周长相等;能够完全重合的两个三角形全等ABCD二、多选题(5小
3、题,每小题4分,共计20分)1、如图,已知,在和中,如果AB DE,BC EF.在下列条件中能保证的是()ABDEFBACDFCABDEDAD2、如图, AD是的中线,E,F分别是AD和AD延长线上的点,且,连结BF,CE下 线 封 密 内 号学级年名姓 线 封 密 外 列说法中正确的有()ACEBF;BABD和ACD面积相等;CBFCE;DBDFCDE3、如图,已知于点D,现有四个条件:;那么能得出的条件是()ABCD4、下列说法中,正确的是( )A用同一张底片冲出来的10张五寸照片是全等形;B我国国旗上的四颗小五角星是全等形;C所有的正六边形是全等形D面积相等的两个直角三角形是全等形5、如
4、图,在AOB的两边截取OA=OB,OC=OD,连接AD,BC交于点P,则下列结论中正确的是( )AAODBOCBAPCBPDC点P在AOB的平分线上DCP=DP第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、将两张三角形纸片如图摆放,量得1+2+3+4=220,则5=_2、如图,ACBC于点C,DEBE于点E,BC平分ABE,BDE=58,则A=_3、如图,在ABC中,点D是AC的中点,分别以AB,BC为直角边向ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中ABMNBC90,连接MN,已知MN4,则BD_4、已知三角形的三边长为4、x、11,化简_5、从六边
5、形的一个顶点出发,可以画出条对角线,它们将六边形分成个三角形边形没有对 线 封 密 内 号学级年名姓 线 封 密 外 角线,则的值为_四、解答题(5小题,每小题8分,共计40分)1、已知a,b,c是的三边长,且,若三角形的周长是小于18的偶数(1)求c的值;(2)判断的形状2、在四边形ABCD中,(1)如图,若,求出的度数;(2)如图,若的角平分线交AB于点E,且,求出的度数;(3)如图,若和的角平分线交于点E,求出的度数3、已知如图,ABC中,AB=AC,D、E分别是AC、AB上的点, M、N分别是CE、BD上的点,若MACE,ANBD,AM=AN求证:EM=DN4、一个零件形状如图所示,按
6、规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由5、如图,AC,BD为四边形ABCD的对角线,ABC90,ABD+ADBACB,ADCBCD(1)求证:ADAC;(2)探求BAC与ACD之间的数量关系,并说明理由-参考答案-一、单选题1、C【解析】【分析】由正多边形的内角拼成一个周角进行判断,ax+by360(a、b表示多边形的一个内角度数,x、y表示多边形的个数)【详解】解:A、正三角形和正方形的内角分别为60、90,360+290360,正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、正三角形和正六边形的内角
7、分别为60、120,260+2120360,或 线 封 密 内 号学级年名姓 线 封 密 外 460+1120360,正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、正方形和正六边形的内角分别为90、120,290+1120300360且390+1120390360,正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;D、正方形和正八边形的内角分别为90、135,190+2135360,正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;故选:C【考点】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角2
8、、C【解析】【分析】根据三角形外角的定义进行分析即可得到答案.【详解】解:属于ABC外角的有1、3共2个故选C【考点】本题考查三角形外角的定义,解题的关键是掌握三角形的定义.3、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及A=90可求得C=DBC=ABD=30,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】ED是BC的垂直平分线,DB=DC,C=DBC,BD是ABC的角平分线,ABD=DBC,A=90,C+ABD+DBC=90,C=DBC=ABD=30,BD=2AD=6,CD=6,CE =3,故选D【考点】本题考查了线段垂直平分线的性质,三角
9、形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.4、A【解析】【分析】根据角平分线的性质得到OEOFOD,设OEx,然后利用三角形面积公式得到SABCSOAB+SOAC+SOCB,于是可得到关于x的方程,从而可得到OF的长度【详解】解:点O为ABC的三条角平分线的交点, 线 封 密 内 号学级年名姓 线 封 密 外 OEOFOD,设OEx,SABCSOAB+SOAC+SOCB, 5x+3x+4x24,x2,点O到AB的距离等于2故选:A【考点】本题考查了角平分线的性质:角平分线上的点到这个角两边的距离相等,面积法的应用是解题的关键5、C【解析】
10、【分析】求出各命题的逆命题,然后判断真假即可【详解】解:对顶角相等,逆命题为:相等的角为对顶角,是假命题不符合题意;同位角相等,两直线平行,逆命题为:两直线平行,同位角相等,是真命题,符合题意;全等三角形的周长相等. 逆命题为:周长相等的两个三角形全等,是假命题,不符合题意;能够完全重合的两个三角形全等. 逆命题为:两个全等三角形能够完全重合,是真命题,符合题意;故逆命题成立的是,故选C【考点】本题主要考查命题与定理,熟悉掌握逆命题的求法是解本题的关键二、多选题1、ABC【解析】【分析】非直角三角形,已知两组对应边相等,合适的判定条件有SAS,SSS依据三角形全等的判定即可判断【详解】这三个条
11、件可组成SAS判定,故A正确这三个条件可组成SSS判定,故B正确由ABDE可得BDEF,这三个条件可组成SAS判定,故C正确这三个条件中对应角不是夹角,ASS不构成全等三角形判定条件,故D错误综上,故选ABC【考点】本题主要考查了三角形全等的判定,熟悉三角形全等的判定条件是解决本题的关键2、ABCD【解析】【分析】根据题意,结合已知条件与全等的判定方法对选项一一进行分析论证,排除错误答案【详解】是的中线, , 线 封 密 内 号学级年名姓 线 封 密 外 又 , , ,故D选项正确 , 故A选项正确; BFCE;故C选项正确是的中线, 和等底等高, 和面积相等,故B选项正确;故选:ABCD【考
12、点】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL3、ABC【解析】【分析】根据全等三角形的判定方法,即可求解【详解】解:, ,A、若,可用角角边证得,故本选项符合题意;B、若,可用角角边证得,故本选项符合题意;C、若,可用边角边证得,故本选项符合题意;D、若,是角角角,不能证得,故本选项不符合题意;故选:ABC【考点】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法边角边、角边角、边边边是解题的关键4、AB【解析】【分析】根据能互相重合的两个图形叫做全等图形对各小题分析判断即可得解【详解】解:A、用同一张底片冲出来的1
13、0张五寸照片是全等形,正确;B、我国国旗上的四颗小五角星是全等形,正确;C、所有的正六边形是全等形,错误,正六边形的边长不一定相等;D、面积相等的两个直角三角形是全等形,错误故选:AB【考点】本题考查了全等图形,熟记概念是解题的关键,多边形要注意从角和边两个方面考虑5、ABCD【解析】【分析】根据题中条件,由两边夹一角可得AODBOC,得出对应角相等,又由已知得出AC=BD,可得APCBPD,同理连接OP,可证AOPBOP,进而可得出结论【详解】解:OA=OB,OC=OD,AOB为公共角, 线 封 密 内 号学级年名姓 线 封 密 外 AODBOC,A=B,又APC=BPD,ACP=BDP,O
14、A-OC=OB-OD,即AC=BD,APCBPD,AP=BP,CP=DP,连接OP,即可得AOPBOP,得出 AOP= BOP,点P在AOB的平分线上故答案选:ABCD【考点】本题主要考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等的判定和性质三、填空题1、40【解析】【分析】直接利用三角形内角和定理得出6+7的度数,进而得出答案【详解】如图所示:1+2+6=180,3+4+7=180,1+2+3+4=220,1+2+6+3+4+7=360,6+7=140,5=180-(6+7)=40故答案为40【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键2、58【解析
15、】【详解】BC平分ABE,ABC=DBE,ACBC,DEBE,A+ABC=90,BDE+DBE=90,A=BDE=58 线 封 密 内 号学级年名姓 线 封 密 外 3、2【解析】【分析】延长BD到E,使DE=BD,连接AE,证明ADECDB(SAS),可得AE=CB,EAD=BCD,再根据ABM和BCN是等腰直角三角形,证明MBNBAE,可得MN=BE,进而可得BD与MN的数量关系即可求解【详解】解:如图,延长BD到E,使DE=BD,连接AE,点D是AC的中点,AD=CD,在ADE和CDB中,ADECDB(SAS),AE=CB,EAD=BCD,ABM和BCN是等腰直角三角形,AB=BM,CB
16、=NB,ABM=CBN=90,BN=AE,又MBN+ABC=360-90-90=180,BCA+BAC+ABC=180,MBN=BCA+BAC=EAD+BAC=BAE,在MBN和BAE中,MBNBAE(SAS),MN=BE,BE=2BD,MN=2BD又MN=4,BD=2,故答案为:2【考点】本题考查了全等三角形的判定与性质、等腰直角三角形,解决本题的关键是掌握全等三角形的判定与性质4、11【解析】【分析】根据三角形三边关系可求出x的取值范围,即可求解【详解】三角形的三边为4、x、11,11-4x11+4,故答案为:11【考点】本题主要考查了构成三角形三边大小的关系和去绝对值的知识,利用三角形三
17、边关系求出x的取值范围是解答本题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、10【解析】【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n-3,分成的三角形数是n-2,三角形没有对角线,依此求出m、n、k的值,再代入计算即可求解【详解】解:对角线的数量m=6-3=3条;分成的三角形的数量为n=6-2=4个;k=3时,多边形没有对角线;m+n+k=3+4+3=10故答案为:10【考点】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n-3,分成的三角形数是n-2四、解答题1、(1)4或6;(2)等腰三角
18、形【解析】【分析】(1)根据三角形三边关系和周长的最小值列式计算即可;(2)根据(1)可得c,根据已知条件得到a=c,即可得到结果;【详解】(1)的周长为,且周长小于18,即,又三角形的周长是小于18的偶数,即为偶数,c为小于8的偶数,则c可以是2,4,6当时,不能构成三角形,故舍去,c的值为4或6(2)由(1)得当时,有;当时,有,为等腰三角形【考点】本题主要考查了三角形三边关系及三角形形状判断的知识点,准确理解是解题的关键2、 (1)(2)(3)【解析】【分析】(1)利用四边形内角和进行角的计算即可;(2)利用四边形内角和及角平分线的计算得出,再由三角形外角的性质求解即可;(3)利用角平分
19、线得出,结合三角形内角和定理即可得出结果(1)解:四边形的内角和是360, 线 封 密 内 号学级年名姓 线 封 密 外 (2),CE平分(3)BE,CE分别平分和,在中,【考点】题目主要考查四边形内角和及平行线的性质,角平分线的定义,三角形内角和定理等,理解题意,熟练掌握运用这些知识点是解题关键3、见解析.【解析】【分析】首先由已知证明RtBANRtCAM,得到ABN=ACM,BN=CM,再根据ASA证明ABDACE,得到BD=CE,由此可得CE-CM= BD-BN,即EM=DN.【详解】证明:在RtBAN和RtCAM中,所以RtBANRtCAM(HL),ABN=ACM,BN=CM,在ABD
20、和ACE中,ABDACE(ASA),BD=CE,CE-CM= BD-BN,即EM=DN.【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题主要考查了三角形全等的判定和性质,熟练掌握判定定理和性质定理并能灵活运用是解题关键.4、不合格,理由见解析【解析】【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【考点】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键5、(1)见解析;(2)BAC2ACD;理由见解析.【解析】【分析】(1)利用直角三角形的两锐角互余、三角形的内角和定理、以及角的和差即可得;(2)先根据直角三角形的两锐角互余可得,再由题(1)的结论和推出,联立化简求解即可得.【详解】(1)在中,在中,即;(2),理由如下:由题(1)知,.【考点】本题考查了直角三角形的两锐角互余、三角形的内角和定理、以及角的和差,熟记三角形的内角和定理、直角三角形的性质是解题关键.