收藏 分享(赏)

2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx

上传人:a**** 文档编号:647327 上传时间:2025-12-12 格式:DOCX 页数:32 大小:765.86KB
下载 相关 举报
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第1页
第1页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第2页
第2页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第3页
第3页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第4页
第4页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第5页
第5页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第6页
第6页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第7页
第7页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第8页
第8页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第9页
第9页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第10页
第10页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第11页
第11页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第12页
第12页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第13页
第13页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第14页
第14页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第15页
第15页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第16页
第16页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第17页
第17页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第18页
第18页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第19页
第19页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第20页
第20页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第21页
第21页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第22页
第22页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第23页
第23页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第24页
第24页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第25页
第25页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第26页
第26页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第27页
第27页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第28页
第28页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第29页
第29页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第30页
第30页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第31页
第31页 / 共32页
2022-2023学年解析卷人教版九年级数学上册期中专项测评试题 卷(Ⅱ)(含答案及详解).docx_第32页
第32页 / 共32页
亲,该文档总共32页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋

2、转后得到正方形,依此方式,绕点O连续旋转2019次得到正方形,那么点的坐标是()ABCD2、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m3、在解一元二次方程x2+px+q0时,小红看错了常数项q,得到方程的两个根是3,1小明看错了一次项系数P,得到方程的两个根是5,4,则原来的方程是()Ax2+2x30Bx2+2x200Cx22x200Dx22x304、二次函数的图象如图所示,对称轴是直线下列结论

3、:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个5、二次函数yax2+bx+c的图象如图所示,则一次函数ybx+c的图象不经过()A第一象限B第二象限C第三象限D第四象限二、多选题(5小题,每小题4分,共计20分)1、对于实数a,b,定义运算“”:,例如:42,因为,所以 线 封 密 内 号学级年名姓 线 封 密 外 ,若函数,则下列结论正确的是()A方程的解为,;B当时,y随x的增大而增大;C若关于x的方程有三个解,则;D当时,函数的最大值为12、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x21012tm22n已知则下列结论中,正确的是()AB和是方

4、程的两个根CD(s取任意实数)3、已知A、B两点的坐标分别是(-2,3)和(2,3),则下面四个结论正确的有()AA、B关于x轴对称;BA、B关于y轴对称;CA、B关于原点对称;D若A、B之间的距离为44、二次函数y=a+ bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有() A抛物线与x轴的另一个交点是(5,0);B4a+c2b;C4a+b=0;D当x1时,y的值随x值的增大而增大5、二次函数y=ax2+bx+c(a0)的顶点坐标为(-1,n),其部分图象如图所示下列结论正确的是()ABC若,是抛物线上的两点,则D关于x的方程无实数根第卷(非选择题

5、65分)三、填空题(5小题,每小题5分,共计25分)1、抛物线的图像与轴交于、两点,若的坐标为,则点的坐标为_ 线 封 密 内 号学级年名姓 线 封 密 外 2、关于的方程,k=_时,方程有实数根3、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是_4、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_5、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_四、解答题

6、(5小题,每小题8分,共计40分)1、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)2、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接

7、写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.3、已知抛物线yax2+3ax+c(a0)与y轴交于点A 线 封 密 内 号学级年名姓 线 封 密 外 (1)若a0当a=1,c=1,求该抛物线与x轴交点坐标;点P(m,n)在二次函数抛物线yax2+3ax+c的图象上,且nc0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当2cxc时,抛物线与x轴只有一个公共点,求a的取值范围.4、在平面直角坐标系中,抛物线交x轴于点,过点B的直线交抛物线于点C(1)求该抛物线的函数表达

8、式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由5、为增加农民收入,助力乡村振兴某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8x40)满足的函数图象如图所示(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润-参考答案-一、单选题1、A【解析】【分析】根据旋转的性质分别求出

9、点A1、A2、A3、的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【详解】四边形OABC是正方形,且,将正方形OABC绕点O逆时针旋转后得到正方形,点A1的横坐标为1,点A1的纵坐标为1,继续旋转则,A4(0,-1),A5,A6(-1,0),A7,A8(0,1),A9,发现是8次一循环,所以余3, 线 封 密 内 号学级年名姓 线 封 密 外 点的坐标为,故选A【考点】本题考查了旋转的性质,规律题点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.2、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断

10、C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质3、B【解析】【分析】分别按照看错的情况构建出一元二次方程,再舍去错误信息,从而可得正确答案.【详解】解: 小红看错了常数项q,得到方程的两个根是3,1,所以此时方程为: 即: 小明看错了

11、一次项系数P,得到方程的两个根是5,4,所以此时方程为: 即: 从而正确的方程是: 故选:【考点】本题考查的是根据一元二次方程的根构建一元二次方程,掌握利用一元二次方程的根构建方程的方法是解题的关键.4、C【解析】【分析】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到 线 封 密 内 号学级年名姓 线 封 密 外 ,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正

12、确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点5、D【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a、b的正负情况,再由一次函数的性质解答【详解】解:由势力的线与y轴正半轴相交可知c0,对

13、称轴x=-0,得b0 所以一次函数ybx+c的图象经过第一、二、三象限,不经过第四象限故选:D【考点】本题考查二次函数图象和一次函数图象的性质,要掌握它们的性质才能灵活解题二、多选题1、ABD【解析】【分析】根据题干定义求出y(2x)(x+1)的解析式,根据2xx+1及2xx+1可得x1时y2x22x,x1时,yx2+1,进而求解 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:根据题意得:当2xx+1,即x1时,y(2x)22x(x+1)2x22x,当2xx+1,即x1时,y(x+1)22x(x+1)x2+1,当x1时,2x22x0,解得x0(舍去)或x1,当x1时,x2+10,解

14、得x1(舍去)或x1,(2x)(x+1)0的解是x11,x21;故A正确,B、当x1时,y2x22x,抛物线开口向上,对称轴是直线x,x1时,y随x的增大而增大,B选项正确当x1时,y2x22x2(x)2,x1时,y取最小值为y0,当x1时,yx2+10,当x0时,y取最大值为y1,如图,当0m1时,方程(2x)(x+1)m有三个解,选项C错误,选项D正确故答案为:ABD【点睛】本题考查二次函数的新定义问题,解题关键是掌握二次函数的性质,掌握二次函数与方程的关系2、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,结合二次函数图象性

15、质,逐一分析各个选项,即可作出相应的判断【详解】解:由表格数据可知,当时,将点代入中,可得 线 封 密 内 号学级年名姓 线 封 密 外 由表格数据可知,当时,;当时,;即抛物线对称轴为:,抛物线对称轴为:,化简得,抛物线解析式化为,将点代入中,化简得,解得,故A选项说法错误,不符合题意;二次函数对称轴为,和时,对应的函数值相等,时,对应函数值为,和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,故,C选项说法正确,符合题意;,即,s取任意实数,故D选项说法错误,不符合题意;故选:BC【点睛】本题考查了二次函数的图象性质,二次函

16、数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键3、BD【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据点坐标关于原点对称、轴对称的特点,求出对应点坐标即可【详解】点A(-2,3)关于x轴对称的点为(-2,-3),故A错误点A(-2,3)关于y轴对称的点为(2,3),故B正确点A(-2,3)关于原点对称的点为(2,-3),故C错误点A、点B的纵坐标相同,故A、B之间的距离为 ,故D正确故选BD【点睛】本题考查了点坐标关于x,y轴对称,关于原点中心对称的特点,以及两点间距离公式,熟悉对应知识点是解决本题的关键4、AC【解析】【分析】根据二次函数的

17、性质,对称轴的性质,函数的增减性逐一判断即可【详解】设抛物线与x轴的另一个交点的横坐标为,二次函数y=a+ bx+c(a0)的图象过点(1,0),对称轴为直线x=2,4a+b=0,=5,抛物线与x轴的另一个交点是(5,0);故A,C两个选项正确;根据图像信息,得x=-2时,其函数值小于0,4a-2 b+c0即4a+c2b,故B选项错误;根据图像信息,当1x2时,y的值随x值的增大而增大,故D选项错误;故选AC【点睛】本题考查了二次函数的性质,对称轴的意义,抛物线与x轴的交点,函数的增减性,熟练掌握二次函数的性质是解题的关键5、CD【解析】【分析】根据二次函数的性质及与x轴另一交点的位置,即可判

18、定A;当x=2时,即可判定B;根据对称性及二次函数的性质,可判定C;根据平移后与x轴有无交点,可判定D【详解】解:由图象可知:该二次函数图象的对称轴为直线,b=2a,由图象可知:该二次函数图象与x轴的左侧交点在-3与-2之间,故与x轴的另一个交点在0与1之间,当x=1时,y0,即a+b+c0,3a+c0,即4a-2b+c0,故B错误; 线 封 密 内 号学级年名姓 线 封 密 外 点关于对称轴对称的点的坐标为,即,在对称轴的左侧y随x的增大而增大,故,故C正确;该二次函数的顶点坐标为(1,n),将函数向下平移n+1个单位,函数图象与x轴无交点,方程无实数根,故D正确,故选:CD【点睛】本题考查

19、了二次函数图象与性质,根据二次函数的图象判定式子是否成立,解题的关键是从图象中找到相关信息三、填空题1、【解析】【分析】用二次函数的图象与x轴的交点关于对称轴对称解答即可【详解】解:抛物线的解析式y=a(x-2)2+c,抛物线的对称轴为直线x=2,抛物线y=a(x-2)2+c与x轴交于A、B两点,点A和点B关于直线x=2对称,点A的坐标为(1,0),点B的坐标为(3,0),故答案为(3,0)【考点】本题主要考查了抛物线与x轴的交点,解题的关键是求出抛物线的对称轴方程为直线x=22、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用

20、根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:,且;综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键3、 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.243.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24x3.25之间【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24x3.25之间.故

21、答案为3.24x3.25.【考点】本题考查了一元二次方程的知识点,解题的关键是根据表格求出一元二次方程的近似根.4、 或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x取值范围(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数【详解】(1)因为表示整数,故当时,的可能取值为0,1,2当取0时, ;当取1时, ;当=2时,故综上当时,x的取值范围为:(2)令,由题意可知:,当时,=,在该区间函数单调递增,故当时, ,得当时,=0, 不符合题意当时,=1, ,在该区间内函数单调递减,故当取值趋近于2

22、时,得,当时,因为 ,故,符合题意故综上:或【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常见题型5、【解析】【分析】设出抛物线方程y=ax2(a0)代入坐标(-2,-3)求得a【详解】解:设出抛物线方程y=ax2(a0),由图象可知该图象经过(-2,-3)点,-3=4a,a=-, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线解析式为y=-x2故答案为:【考点】本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式四、解答题1、见解

23、析.【解析】【分析】根据轴对称图形和旋转对称图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【点睛】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念2、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a0或m3(2)-9

24、(3)或或【解析】【分析】(1)当,时,令时,求解方程的解即可;将P(m,n)代入yax2+3ax+c中,要使nc0,即可得,解出不等式即可;(2)根据抛物线恒在x轴下方,可得,求出a的取值范围,根据符合条件的整数a只有三个,判断并求出c的取值范围,从而求出c的最小值;(3)根据点A的坐标得到抛物线解析式为,然后根据2cxc时,抛物线与x轴只有一个公共点,分三种情况:当时,当时,当时,进行分类讨论求出符合题意的a的取值范围.(1)解:当,时,当时,解得:,抛物线与轴的交点坐标,;,解得:或;(2)解:抛物线恒在x轴下方,解得:,符合条件的整数a只有三个,解得:,的最小值为,(3)解:点A的坐标

25、是(0,1),又当时,抛物线与x轴只有一个公共点,当时, 线 封 密 内 号学级年名姓 线 封 密 外 当时,当时,解得:,或者,无解当时,无解,或者,解得:,当时,解得:,此时,令时,则,解得:,符合题意,综合上述可知:a的取值范围为:或或.【点睛】此题主要考查的是函数图象与x轴的交点问题,在x的取值范围内,根据交点个数进行分类讨论,从而求出a的取值范围4、(1);(2);(3)存在,或 或或【解析】【分析】(1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点

26、F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 线 封 密 内 号学级年名姓 线 封 密 外 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组

27、的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的最大值为(3)存在设M(p,q),其中,且p0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 线 封 密 内 号学级年名姓 线 封 密 外 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上所述,满足题意的点M的坐标为或或或【点睛】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二

28、次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法5、(1);(2)最大利润为3840元【解析】【分析】(1)分为8x32和32x40求解析式;(2)根据“利润(售价成本)销售量”列出利润的表达式,在根据函数的性质求出最大利润【详解】解:(1)当8x32时,设ykxb(k0),则,解得:,当8x32时,y3x216,当32x40时,y120,;(2)设利润为W,则:当8x32时,W(x8)y(x8)(3x216)3(x40)23072,开口向下,对称轴为直线x40,当8x32时,W随x的增大而增大,x32时,W最大2880,当32x40时,W(x8)y120(x8)120x960,W随x的增大而增大,x40时,W最大3840,38402880,最大利润为3840元【点睛】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值 线 封 密 内 号学级年名姓 线 封 密 外

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1