1、京改版八年级数学上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果是()ABCD2、若数a与其倒数相等,则的值是()ABCD03、关于x的方程2+有增根,则k的值为()
2、A3B3C3D24、下列说法中,正确的是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正实数包括正有理数和正无理数D实数可以分为正实数和负实数两类5、按如图所示的运算程序,能使输出y值为1的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列数中不是无理数的是()ABC0.37373737D2、下列说法中不正确的是()A-6和-4之间的数都是有理数B数轴上表示-a的点一定在原点左边C在数轴上离开原点越远的点表示的数越大D-1和0之间有无数个负数3、已知,则的大小关系是()ABCD4、下列计算正确的是()ABCD5、下列等式不成立的是()ABCD第卷(非选择题 65分
3、)三、填空题(5小题,每小题5分,共计25分)1、比较大小:_2、若,则_3、与 最接近的自然数是 _4、若一个偶数的立方根比2大,平方根比4小,则这个数是_.5、若分式有意义,则x的取值范围是 _四、解答题(5小题,每小题8分,共计40分)1、计算:(1)3-9+3;(2)()+();(3)+6-2x;(4)+(-1)0.2、阅读下列材料:设:,则.由-,得,即.所以.根据上述提供的方法.把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?3、先化简,再求值:,且x为满足3x2的整数4、徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高
4、铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?5、化简,并求值其中a与2、3构成的三边,且a为整数-参考答案-一、单选题1、A【解析】【详解】原式故选A.2、A【解析】【分析】先将分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a1,进而代入计算即可求得答案【详解】解:原式,数a与其倒数相等,a1,原式,故选:A【考点】本题考查了分式的除法运算以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键3、D【解析】【分析】根据增根的定义可求出x的值,把方程去分母后,再把求得的
5、x的值代入计算即可.【详解】解:原方程有增根,最简公分母x30,解得x3,方程两边都乘(x3),得:x12(x3)+k,当x3时,k2,符合题意,故选D【考点】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程4、C【解析】【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题
6、属于基础题型5、D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足mn,则y=2m+1=3; B选项不满足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足mn,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.二、多选题1、ABC【解析】【分析】根据无理数的定义:无限不循环小数即为无理数,据此判断即可【详解】解:A、是分数,不是有理数,符合题意;B、是整数,不是有理数,符合题意;C、0.37373737是有限小数,不是无理数,符合题意;D、是无理数,不符合题意故选:AB
7、C【考点】本题考查了有理数,熟知定义是解本题的关键2、ABC【解析】【分析】根据实数与数轴的关系判断A项;当a为负数时,-a为正数,在原点的右边,当a=0时,-a为0,在原点上,以此判断B项;根据数轴的性质判断C项; 0与-1之间有无数实数,即有正实数,又有负实数,以此判断D项【详解】解:A.数轴上的点不是与有理数一一对应,因此A选项不正确;B.-a不一定表示负数,因此B选项不正确;C.数轴所表示的数越向右越大,越向左越小,离原点越远,在左侧时,数就越小,因此选项不正确;D.0与-1之间有无数个点,表示无数个实数,包括无数个负实数,因此选项D正确故选:ABC【考点】考查数轴表示数的意义,以及数
8、轴上所表示的数的大小比较,理解数轴上的点与实数一一对应是解决问题的前提3、AD【解析】【分析】先根据幂的运算法则进行计算,再比较实数的大小即可得出结论【详解】 故不符合题意,符合题意,故选择:AD【考点】此题主要考查幂的运算,解题的关键是正确理解零指数幂以及负指数幂的运算法则4、CD【解析】【分析】利用幂的运算法则可判断 利用平方差公式的特点可判断 利用同底数幂的除法判断 利用合并同类项可判断 从而可得答案.【详解】解:,故不符合题意;故不符合题意;故符合题意;故符合题意;故选:【考点】本题考查的是幂的运算,负整数指数幂的含义,平方差公式的应用,合并同类项,掌握以上运算的运算法则是解题的关键.
9、5、ABD【解析】【分析】根据分式乘方的运算法则逐一计算即可得【详解】解:A、,错误;B、,错误;C、,正确;D、,错误故选ABD【考点】此题考查了分式的乘方,熟练掌握运算法则是解本题的关键三、填空题1、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则2、1【解析】【分析】根据绝对值的非负性和二次根式的非负性得出a,b的值,即可求出答案【详解】,故答案为:1【考点】本题考查了绝对值的非负性,二次根式的非负性,整数指数幂,得出a,b的值是解题关键3、2【解析】【分析】先根据得到,
10、进而得到,因为14更接近16,所以最接近的自然数是2【详解】解:,可得,14接近16,更靠近4,故最接近的自然数是2故答案为:2【考点】本题考查无理数的估算,找到无理数相邻的两个整数是解题的关键4、10,12,14【解析】【分析】首先根据立方根平方根的定义分别求出2的立方,4的平方,然后就可以解决问题【详解】解:2的立方是8,4的平方是16,所以符合题意的偶数是10,12,14故答案为10,12,14【考点】本题考查立方根的定义和性质,注意本题答案不唯一求一个数的立方根,应先找出所要求的这个数是哪一个数的立方由开立方和立方是互逆运算,用立方的方法求这个数的立方根注意一个数的立方根与原数的性质符
11、号相同5、【解析】【分析】根据分式有意义的条件,即可求解【详解】解:根据题意得: ,解得: 故答案为:【考点】本题主要考查了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键四、解答题1、(1)15;(2)6;(3)3;(4)+1.【解析】【分析】根据二次根式的公式化简即可.【详解】(1)原式=12-3+6=(12-3+6)=15;(2)原式=4+2+2=6;(3)原式=2+3-2=3;(4)原式=3+1=+1.【考点】本题考查二次根式的计算,注意合并同类二次根式.2、,.任何无限循环小数都可以化成分数.【解析】【分析】设则,;由,得;由已知,得,所以任何无限循环小数都可以
12、这样化成分数.【详解】解:设则,由-,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.3、2x3,-5【解析】【分析】根据分式的运算法则即可求出答案【详解】原式=+=(+)x=x1+x2=2x3由于x为满足3x2的整数,x0且x1且x2,所以x=1,原式=23=5【考点】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型4、A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【解析】【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,1.4t=3.5答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【考点】本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.5、,原式【解析】【分析】根据分式的运算性质进行花间,再根据三角西三边关系和分式有意义的条件求解即可;【详解】原式,a与2、3构成的三边,且a为整数,即,当或时,原式没有意义,取,原式【考点】本题主要考查了分式的化简和分式有意义的条件和三角形三边关系,准确分析计算是解题的关键