1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,五边形是O的内接正五边形,则的度数为()ABCD2、如果,那么
2、的结果是()ABCD3、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关4、一元二次方程(m+1)x2-2mx+m2-10有两个异号根,则m的取值范围是()Am1Bm1且m-1Cm1D-1m15、2020年7月20日,宁津县人民政府印发津县城市生活垃圾分类制度实施方案的通知,全面推行生活垃圾分类下列垃圾分类标志分别是厨余垃圾、有害垃圾、其他垃圾和可回收物,其中既是轴对称图形又是中心对称图形的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、抛物线y=ax2+bx+c(a0)的顶点
3、为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论中正确的是()Ab24ac0B当x1时,y随x增大而减小Ca+b+c0D若方程ax2+bx+c-m=0没有实数根,则m2E3a+c02、已知二次函数yax2bxc(a0)的图象如图所示,下列结论正确的有( ) 线 封 密 内 号学级年名姓 线 封 密 外 A2ab0Babc0C4a2bc0Dac03、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x28x1+m0的两根,则m的值为()A15B16C17D184、下列关于x的一元二次方程中,没有两个不相等的实数根的方程是()ABCD5、下
4、列说法不正确的是()A经过三个点有且只有一个圆B经过两点的圆的圆心是这两点连线的中点C钝角三角形的外心在三角形外部D等腰三角形的外心即为其中心第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.2、关于的一元二次方程的一个根是2,则另一个根是_3、中国“一带一路”倡议给沿线国家带来很大的经济效益若沿线某地区居民2017年人均收入300美元,预计2019年人均收入将达到432美元,则2017年到2019年该地区居民年人均收入增长率为_.4、若抛物线 的图像与轴有交点,那么的取值范围是_.5、如图是抛物线
5、型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加_m.四、解答题(5小题,每小题8分,共计40分)1、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,B,抛物线顶点为C,ABC为等边三角形,求SABC;2、(1)计算:(2)解方程:2(x3)2503、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧). 线 封 密 内 号学级年名姓 线 封 密 外 (1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内
6、的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.4、已知关于x的一元二次方程x2+xm=0(1)设方程的两根分别是x1,x2,若满足x1+x2=x1x2,求m的值(2)二次函数y=x2+xm的部分图象如图所示,求m的值5、冰墩墩是2022年北京冬季奥运会的吉祥物冰墩墩以熊猫为原型设计,寓意创造非凡、探索未来某超市用2400元购进一批冰墩墩玩偶出售若进价降低20%,则可以多买50个市场调查发现:当每个冰墩墩玩偶的售价是20元时,每周可以销售200个;每涨价1元,每周少销售10个(1)求每个冰墩墩玩偶的进价;(2)设每个冰墩墩玩偶的售价是x元(x是大于20的正整数),
7、每周总利润是w元求w关于x的函数解析式,并求每周总利润的最大值;当每周总利润不低于1870元时,求每个冰墩墩玩偶售价x的范围-参考答案-一、单选题1、D【解析】【分析】先根据正五边形的内角和求出每个内角,再根据等边对等角得出ABE=AEB,然后利用三角形内角和求出ABE=即可【详解】解:五边形是O的内接正五边形,A=ABC=,AB=AE,ABE=AEB,ABE=,故选:D 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算,掌握圆内接正五边形的性质,等腰三角形性质,三角形内角和公式,角的和差计算是解题关键2、B【解
8、析】【分析】根据比例的性质即可得到结论【详解】,可设a2k,b3k,故选B【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案3、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值
9、问题,掌握二次函数的性质、灵活运用配方法是解题的关键4、B【解析】【分析】设方程两根为x1,x2,根据一元二次方程的定义和根与系数的关系求解即可【详解】解:设方程两根为x1,x2,根据题意得m+10,解得m1且m-1,x1x20,0,m的取值范围为m1且m-1故选:B 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了一元二次方程根与系数的关系5、B【解析】【分析】根据轴对称图形和中心对称图形的概念去判断即可【详解】A、既
10、不是轴对称图形也不是中心对称图形,故不满足题意;B、是轴对称图形也是中心对称图形,故满足题意;C、既不是轴对称图形也不是中心对称图形,故不满足题意;D、既不是轴对称图形也不是中心对称图形,故不满足题意;故选:B【考点】本题考查了轴对称图形和中心对称图形,关键是紧扣轴对称图形和中心对称图形的概念二、多选题1、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断【详解】二次函数与x轴有两个交点,b-4ac0,故A错误,观察图象可知:当x-1时,y随x增大而减小,故B正确,抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,x=1时,y=a+b+c0,故C正确,当m2时,抛物线与
11、直线y=m没有交点,方程ax+bx+c-m=0没有实数根,故D正确,对称轴x=-1= ,b=2a,a+b+c0,3a+c0,故E正确,故答案为BCDE【考点】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型2、AD【解析】【分析】结合图象,根据函数的开口方向、与y轴的交点、对称轴的位置、和当x=-2时,x=-1时,对应y值的大小依次可判断【详解】解:根据开口方向可知,根据图象与y轴的交点可知,根据对称轴可知:, 线 封 密 内 号学级年名姓 线 封 密 外 ,故A选项正确;abc0,故B选项错误;根据图象可知,当x
12、=-2时,故C选项错误;根据图象可知,当x=-1时,故D选项正确故选:AD【考点】本题考查了二次函数图象判定式子的正负二次函数yax2bxc系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点确定,注意特殊点的函数值3、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值【详解】解:当3为腰时,此时a3或b3,把x3代入方程x28x1+m0得9241+m0,解得m16,此时方程为x28
13、x+150,解得x13,x25;当3为底时,此时ab,824(1+m)0,解得m17,此时方程为x28x+160,解得x1x24;综上所述,m的值为16或17故答案为:BC【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键4、ABC【解析】【分析】根据根的判别式=b2-4ac的值的符号,可以判定个方程实数根的情况,注意排除法在解选择题中的应用【详解】解:A、=b2-4ac=02-414=-160,此方程没有实数根,故本选项符合题意;B、=b2-4ac=(-4)2-414=0,此方程有两个相等的实数根,故本选项符合题意;C、=b2-4ac=
14、12-413=-110,此方程没有实数根,故本选项符合题意;D、=b2-4ac=22-41(-1)=80,此方程有两个不相等的实数根,故本选项不符合题意;故选:ABC【考点】本题考查了一元二次方程根的判别式的知识此题比较简单,注意掌握一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根5、ABD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】A.根据确定圆的条件求解即可;B.根据确定圆心的方法求解即可;C.根据三角形外心的性质求解即可;D.根据三角形外心的性质求解
15、即可;【详解】解:A、如果三个点在一条直线上,不存在经过这三个点的圆,故选项错误,符合题意;B、经过两点的圆的所有圆心在两点连线的垂直平分线上,不仅仅是这两点连线的中点,故选项错误,符合题意;C、钝角三角形的外心是三边垂直平分线的交点,在三角形外部,选项正确,不符合题意;D、等腰三角形的外心是三边垂直平分线的交点,不是其中心,故选项错误,符合题意;故选:ABD【考点】此题考查了确定圆的条件,确定圆心的方法,三角形的外心等知识,解题的关键是熟练掌握确定圆的条件,确定圆心的方法,三角形的外心三、填空题1、【解析】【分析】由题意抛物线过点(40,0),顶点坐标为(20,10),设抛物线的解析式为,从
16、而求出a的值,然后确定抛物线的解析式【详解】解:依题意得此函数解析式顶点为,设解析式为,又函数图象经过,.故答案为 .【考点】本题主要考查用待定系数法确定二次函数的解析式,解题时应根据情况设抛物线的解析式从而使解题简单,此题设为顶点式比较简单.2、-3【解析】【分析】由题意可把x=2代入一元二次方程进行求解a的值,然后再进行求解方程的另一个根【详解】解:由题意把x=2代入一元二次方程得:,解得:,原方程为,解方程得:,方程的另一个根为-3;故答案为-3 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查一元二次方程的解及其解法,熟练掌握一元二次方程的解及其解法是解题的关键3、2
17、0【解析】【分析】设该地区人均收入增长率为x,根据2017年人均收入300美元,预计2019年人均收入将达到432美元,可列方程求解.【详解】解:设该地区人均收入增长率为x,则300(1+x)2=432,(1+x)2=1.44,解得x=0.2(x=-2.2舍),该地区人均收入增长率为20.故本题答案应为:20.【考点】一元二次方程在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.4、【解析】【分析】由抛物线 的图像与轴有交点可知,从而可求得的取值范围【详解】解:抛物线 的图像与轴有交点令,有,即该方程有实数根故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的
18、关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键5、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为 线 封 密 内 号学级年名姓 线 封 密 外 通过以上条件可设顶点式,其中可通过代入A点坐标 代入到抛物线解析式得出:所以抛物线解析式为 当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的
19、距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出: 解得:所以水面宽度增加到米,比原先的宽度当然是增加了 故答案是: 【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键四、解答题1、 【解析】【分析】过B作BPx轴交于点P,连接AC,BC,由抛物线y=得C(2,0),于是得到对称轴为直线x=2,设B(m,n),根据ABC是等边三角形,得到BC=AB=2m-4,BCP=ABC=60,求出PB=PC=(m-2),由于PB=n=,于是得到(m-2)=,解方程得到m的值,然后根据三角形的面积公式即可得到结果【详解】解:过B作BPx轴交于点
20、P,连接AC,BC,由抛物线y=得C(2,0),对称轴为直线x=2,设B(m,n),CP=m-2,ABx轴,AB=2m-4,ABC是等边三角形,BC=AB=2m-4,BCP=ABC=60,PB=PC=(m-2),PB=n=,(m-2)=,解得m=,m=2(不合题意,舍去),AB=,BP=,SABC= 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查二次函数的性质.2、(1);(2)x8或2【解析】【分析】(1)直接利用立方根以及算术平方根的性质化简得出答案;(2)直接利用平方根的定义计算得出答案【详解】(1)原式23(1)1+1;(2)2(x3)250(x3)225,则x35,解
21、得:x8或2【考点】此题考查实数的运算,解一元二次方程-配方法,解题关键在于掌握运算法则.3、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2
22、,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,; 线 封 密 内 号学级年名姓 线 封 密 外 抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键4、 (1)(2)【解析】【分析】(1)根据根与系数的关系求得x1+x2、x1x2,然后代入列出方程,通过解方程来求m的值;(2)把点(1,0)代入抛物线解析式,求得m的值(1)解:由题意得:x1+x2=-1,x1x2=-m,-1=-mm=1当m=1时,x2+
23、x-1=0,此时=1+4m=1+4=50,符合题意m=1;(2)解:图象可知:过点(1,0),当x=1,y=0,代入y=x2+x-m,得12+1-m=0m=2【考点】本题主要考查了抛物线与x轴的交点,根与系数的关系,解题的关键是掌握如果x1,x2是一元二次方程ax2+bx+c=0的两根,那么有x1+x2=-,x1x2=5、 (1)每个冰墩墩钥匙扣的进价为12元(2),最大值为1960元;每个冰墩墩玩偶售价x的范围为:【解析】【分析】(1)设每个冰墩墩钥匙扣的进价为x元,根据题意列出分式方程,进而计算求解即可;(2)根据题意列出一次函数关系,根据一次函数的性质求得最大利润即可;根据题意列出方程,根据二次函数的性质求得的范围,根据题意取整数解即可(1)设每个冰墩墩钥匙扣的进价为x元,由题意得:,解得,经检验,是原方程的解且符合题意,答:每个冰墩墩钥匙扣的进价为12元;(2) 线 封 密 内 号学级年名姓 线 封 密 外 且x是大于20的正整数当时,w有最大值,最大值为1960元售价为24元或25元或26元或27元或28元解析如下:由题意得,解得或29抛物线开口向下,x是大于20的正整数当时,每周总利润不低于1870元,【考点】本题考查了分式方程的应用,二次函数的应用,一次函数的应用,根据题意列出方程或关系式是解题的关键