1、人教版七年级数学上册第二章整式的加减重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形正确的是( )ABCD2、下列不能用表示的是()A葡萄的价格是4元/千克,买葡萄的价钱B一个正方形的边长
2、是m,这个正方形的周长C甲平均每小时加工m个零件,后共加工的零件个数D若4和m分别表示一个两位数中的十位数字和个位数字,表示这个两位数3、下列式子中a,xy2,0,是单项式的有()个A2B3C4D54、在0,1,x,3x,中,是单项式的有()A1个B2个C3个D4个5、用实际问题表示代数式意义不正确的是()A单价为a元的苹果与单价为b元的梨的价钱和B3件单价为a元的上衣与4件单价为b元的裤子的价钱和C单价为a元/吨的3吨水泥与4箱b千克的行李D甲以的速度行驶与乙以的速度行驶的路程和6、下列运算中,正确的是()A3x+4y12xyBx9x3x3C(x2)3x6D(xy)2x2y27、下列式子中不
3、是代数式的是()ABCD8、在中,是代数式的有()A5个B4个C3个D2个9、下列说法正确的是()A的项是,5B与都是多项式C多项式的次数是3D一个多项式的次数是6,则这个多项式中只有一项的次数是610、把多项式合并同类项后所得的结果是()A二次三项式B二次二项式C一次二项式D单项式第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若单项式与单项式是同类项,则_2、若单项式与是同类项,则_3、已知有理数a和有理数b满足多项式A,是关于x的二次三项式,则_,_;当时,多项式A的值为_4、如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑
4、色棋子的个数为_5、多项式a3b - a2+3ab24a5+3是_次_项式,按a的降幂排列的结果_三、解答题(5小题,每小题10分,共计50分)1、用代数式表示:(1)比x的平方的5倍少2的数;(2)x的相反数与y的倒数的和;(3)x与y的差的平方;(4)某商品的原价是a元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x表示十位上的数字,用代数式表示这个三位数2、如图所示,在数轴上点A,B,C表示得数为2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)求AB、AC的长;(2)点A,B,
5、C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动请问:BCAB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值3、化简:(1)3x2y+2x2y+3xy2xy2;(2)4x2(2x2+x1)+(2x2+3x)4、已知A=3a2b2ab2+abc,小明同学错将“2AB”看成“2A+B”,算得结果为4a2b3ab2+4abc(1)计算B的表达式;(2)求出2AB的结果;(3)小强同学说(2)中的结果的大小与c的取值无关,对吗?若a=,b=,求(2)中式子的值5、某校七
6、年级(1)班和(2)班的师生外出旅游,其中(1)班有教师6人,学生35人,(2)班有教师5人,学生30人,教师的旅游费用为每人a元,学生的旅游费用为每人b元因为是团体出游,所以旅行社给予优惠,教师按八折优惠,学生按六折优惠则:这次旅游师生一共要用去多少元钱?并求出时的总费用-参考答案-一、单选题1、C【解析】【分析】根据去括号和添括号法则解答【详解】A、原式a2,故本选项变形错误B、原式a,故本选项变形错误C、原式(a1),故本选项变形正确D、原式(a1),故本选项变形错误故选:C【考点】本题主要考查了去括号与添括号,去括号法则是根据乘法分配律推出的;去括号时改变了式子的形式,但并没有改变式子
7、的值;添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号里的各项都改变符号添括号与去括号可互相检验2、D【解析】【分析】对选项逐个计算,查看是否为即可【详解】解:Am千克葡萄的价钱是,不合题意;B正方形的周长是,不合题意;C甲后共加工个零件,不合题意;D这个两位数是,也就是,符合题意故选D【考点】此题考查了根据题意列代数式,解题的关键是理解题意3、B【解析】【分析】根据单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式进行逐一判断即可【详解】解:式子中a,xy2,0,是单项式的有a,xy2,0,一共3个故选B【考点】本题主要考查了单项
8、式的定义,解题的关键在于能够熟练掌握单项式的定义4、D【解析】【分析】利用数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,进而判断得出即可【详解】根据单项式的定义可知,只有代数式0,-1,-x, a,是单项式,一共有4个.故答案选D.【考点】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.5、C【解析】【分析】根据题意列代数式判断即可【详解】解:A、所表示的代数式为:3a+4b,故本选项错误;B、所表示的代数式为:3a+4b,故本选项错误;C、单价为a元/吨的3吨水泥与4箱b千克的行李不能得出代数式3a+4b,故本选项正确;D、所表示的代
9、数式为:3a+4b,故本选项错误;故选:C【考点】本题考查了列代数式的知识,属于基础题,注意仔细分析各选项所表示的代数式6、C【解析】【分析】直接应用整式的运算法则进行计算得到结果【详解】解:A、原式不能合并,错误;B、原式,错误;C、原式,正确;D、原式,错误,故选:C【考点】整式的乘除运算是进行整式的运算的基础,需要完全掌握.7、C【解析】【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项【详解】解:A、是代数式,故不符合题意;B、是代数式,故不符合题意;C、中含有“=”,不是代数式,故符合题意;D、是代数式,故不符
10、合题意;故选C【考点】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键8、A【解析】【分析】代数式是由数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、等符号【详解】,含有“=”和“”,所以不是代数式,则是代数式的有其5个,故选:A【考点】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、等符号的不是代数式9、B【解析】【分析】根据多项式的项数、次数和多项式定义,即几个单项式的和叫做多项式判断即可;【详解】解:A的项是,5,故错误;B与都是多项式,故正确;C多项式的次数是2,故错误;D一个多项式的次数是6,则这个多项式中不一
11、定只有一项的次数是6,如,故错误故选B【考点】本题主要考查了多项式的定义、项数、次数,准确分析判断是解题的关键10、B【解析】【分析】先进行合并同类项,再判断多项式的次数与项数即可【详解】最高次为2,项数为2,即为二次二项式故选B【考点】本题考查了多项式的次数与项数,合并同类项,掌握多项式的系数与次数是解题的关键二、填空题1、4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n的值,再代入求解即可.【详解】解:单项式与单项式是同类项,m-1=2,n+1=2,解得:m=3,n=1.m+n=3+1=4.故答案为:4.
12、【考点】本题考查了同类项的概念,正确理解同类项的定义是解题的关键.2、【解析】【分析】利用同类项的定义求出m,n的值,再代入求值即可【详解】解:单项式3xmy3与2x5yn+1是同类项,m5,3n+1,即m5,n2,(n)m(2)532,故答案为:32【考点】本题主要考查了同类项,解题的关键是熟记同类项的定义3、 1 【解析】【分析】根据有理数a和b满足多项式A是关于x的二次三项式,求得a、b的值,然后分别代入计算可得【详解】解:有理数a和b满足多项式A是关于x的二次三项式,a10,解得a1当|b2|2时,解得b0 或b4,此时A不是二次三项式;当|b2|1时,解得b1(舍)或b3,当|b2|
13、0时,解得b2(舍),当a11且|b2|3,即a0、b1或5时,此时A不是关于x的二次三项式;a1,b3,当时,故答案为:1;【考点】本题考查了多项式的知识,解题的关键是根据题意求得a、b的值,题目中重点渗透了分类讨论思想4、440【解析】【分析】先观察图形得出前四个图中黑色棋子的个数,再归纳类推出一般规律,由此即可得【详解】观察图形可知,黑色棋子的个数变化有以下两条规律:(1)正多边形的各顶点均需要1个黑色棋子(2)从第1个图开始,每个图的边上黑色棋子的个数变化依次是即第1个图需要黑色棋子的个数为第2个图需要黑色棋子的个数为第3个图需要黑色棋子的个数为第4个图需要黑色棋子的个数为归纳类推得:
14、第n个图需要黑色棋子的个数为,其中n为正整数则第20个图需要黑色棋子的个数为故答案为:440【考点】本题考查了整式的图形规律探索题,依据图形,正确归纳类推出一般规律是解题关键5、 五 五 -4a5+a3b-a2+3ab2+3【解析】【分析】根据每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数定义进行判断【详解】解:原多项式的最高次项是-4a5,次数是5次,一共有5项,因此是五项式;a3b次数是4,3ab2次数是3,-a2次数是2,按a的降幂排列的结果:4a5+a3ba2+3ab2+3;故答案为:五、五、4a5+a3ba2+3ab2+3【考点】本题考查了多项式,掌握多项式的项
15、、多项式的次数的定义,把每个单项式的次数判断出是按a的降幂排列解题的关键三、解答题1、 (1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4)【解析】【分析】(1)明确是x的平方的5倍与2的差;(2)先求出x的相反数与y的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数【详解】(1)5x2-2;(2)-x+;(3)(x-y)2;(4)(1+15%)a;(5)200(x-4)+10x+(x-4) 【考点】本题考查了列代数式,能够根据运算顺序正确书写,同时注
16、意数位的意义,注意“多,少,积,差”等关键字的把握2、 (1)(2)变化,当时取得最大值4【解析】【分析】(1)根据点A,B,C表示的数,即可求出AB, AC的长;(2)根据题意分别求得点A表示的数为-2-2t,点B表示的数为3t,点C表示的数为6+4t,根据两点距离求得,进而根据整式的加减进行计算即可(1)解:AB=0-(-2)=2, AC=(2)当运动时间为t秒时,点A表示的数为-2-2t,点B表示的数为3t,点C表示的数为6+4t,则,当时,的值最大,最大值为【考点】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t的代数
17、式表示出BC,AB的长3、 (1) x2y+2xy2;(2) x2+2x+3【解析】【分析】(1)把同类项进行合并即可得;(2)先去括号,然后再合并同类项即可得答案.【详解】(1)3x2y+2x2y+3xy2xy2=(-3+2)x2y+(3-1)xy2=x2y+2xy2;(2)4x2(2x2+x1)+(2x2+3x)=4x22x2x+1+2x2+3x=x2+2x+3【考点】本题考查了整式的加减,熟练掌握去括号法则以及合并同类项法则是解题的关键.4、(1)2a2b+ab2+2abc;(2) 8a2b5ab2;(3)对,0【解析】【分析】(1)根据B4a2b3ab2+4abc2A列出关系式,去括号
18、合并即可得到B;(2)把A与B代入2A-B中,去括号合并即可得到结果;(3)把a与b的值代入计算即可求出值【详解】解:(1)2AB4a2b3ab2+4abc,B4a2b3ab2+4abc2A4a2b3ab24abc2(3a2b2ab2abc)4a2b3ab24abc6a2b4ab22abc2a2bab22abc;(2)2AB2(3a2b2ab2abc)(2a2bab22abc) 6a2b4ab22abc2a2bab22abc8a2b5ab2;(3)对,由(2)化简的结果可知与c无关,将a,b代入,得8a2b5ab2850【考点】本题考查了整式的加减,整式加减的运算法则:一般地,几个整式相加减,如果有括号先去括号,然后再合并同类项5、元,1761元【解析】【分析】先根据题意列出这次旅游师生一共要用去总钱数的代数式,化简后再把特殊值代入即可求解【详解】解:根据题意得,(1)班和(2)班的教师共花费:元,(1)班和(2)班的学生共花费:元,这次旅游师生一共要用去:元,当时,原式(元),答:这次旅游师生一共要用去元钱;当时的总费用是1761元【考点】本题主要考查列代数式以及代数式求值,读懂题意,根据题意准确的列出这次旅游师生一共要用去总钱数的代数式是解题的关键