1、人教版七年级数学上册第二章整式的加减单元测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、式子,0,a,中,下列结论正确的是()A有4个单项式,2个多项式B有3个单项式,3个多项式C有5个整式D以上答案
2、均不对2、下列式子中不是代数式的是()ABCD3、如果2x2yn与5xm1y的和是单项式,那么m,n的值分别是Am=2,n=1Bm=1,n=2Cm=3,n=1Dm=3,n=24、如果一个多项式的各项的次数都相同,那么这个多项式叫做齐次多项式如是3次齐次多项式,若是齐次多项式,则的值为()AB0C1D25、下列式子中a,xy2,0,是单项式的有()个A2B3C4D56、化简的结果是()ABCD7、已知与是同类项,则的值是()A2B3C4D58、化简的结果是()ABCD9、下面说法中一定是负数;是二次单项式;倒数等于它本身的数是1;若,则;由变形为,正确的个数是( )A1个B2个C3个D4个10、
3、观察下面一列有序数对:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),按这些规律,第50个有序数对是()A(3,8)B(4,7)C(5,6)D(6,5)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如果代数式的值为,那么代数式的值为_2、已知多项式是三次三项式,则(m1)n_3、如果单项式与的和仍是单项式,那么_4、多项式a3b - a2+3ab24a5+3是_次_项式,按a的降幂排列的结果_5、已知2m3n=4,则代数式m(n4)n(m6)的值为_三、解答题(5小题,每小
4、题10分,共计50分)1、先化简,再求值2(3a2b-ab2)-(ab2+2a2b)+3ab2,其中a=,b=-62、已知:,求的值3、如图所示,在数轴上点A,B,C表示得数为2,0,6,点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,点A与点C之间的距离表示为AC(1)求AB、AC的长;(2)点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和4个单位长度的速度向右运动请问:BCAB的值是否随着运动时间t的变化而变化?若不变,请求其值;若变化,请说明理由并判断是否有最值,若有求其最值4、如图,用字母表示图中阴影部分的面
5、积5、(1)先化简,再求值:,其中,满足(2)关于的代数式的值与无关,求的值-参考答案-一、单选题1、A【解析】【分析】数与字母的乘积形式是单项式,单独一个数或一个字母是单项式,几个单项式的和是多项式【详解】解:是两个单项式的和,是多项式;是单项式;是3个单项式的和,是多项式:0,a是单项式;是单项式;不是整式,综上所述,单项式共有4个,多项式共有2个,整式共有6个,故选:A【考点】本题考查多项式、单项式的定义,是基础考点,掌握相关知识是解题关键2、C【解析】【分析】根据代数式的定义:用基本运算符号(基本运算包括加减乘除、乘方和开方)把数或表示数的字母连接起来的式子,由此可排除选项【详解】解:
6、A、是代数式,故不符合题意;B、是代数式,故不符合题意;C、中含有“=”,不是代数式,故符合题意;D、是代数式,故不符合题意;故选C【考点】本题主要考查代数式的定义,熟练掌握代数式的定义是解题的关键3、C【解析】【分析】两个单项式的和为单项式,则这两个单项式是同类项,再根据同类项的定义列出关于m,n的方程组,即可求出m,n的值.【详解】2x2yn与5xm1y的和是单项式,则2x2yn与5xm1y是同类项, 解得:m=3,n=1故选C.【考点】考查同类项的概念,掌握两个单项式的和为单项式,则这两个单项式是同类项是解题的关键.4、C【解析】【分析】根据齐次多项式的定义列出关于x的方程,最后求出x的
7、值即可【详解】解:由题意,得x+2+3=1+3+2解得x=1故选C【考点】本题主要考查了学生的阅读能力与知识的迁移能力以及单项式的次数,根据齐次多项式列出方程成为解答本题的关键5、B【解析】【分析】根据单项式的定义:表示数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式进行逐一判断即可【详解】解:式子中a,xy2,0,是单项式的有a,xy2,0,一共3个故选B【考点】本题主要考查了单项式的定义,解题的关键在于能够熟练掌握单项式的定义6、D【解析】【分析】原式去括号合并即可得到结果【详解】原式=3x-1-2x-2=x-3,故选D【考点】此题考查了整式的加减,熟练掌握运算法则是解本题的
8、关键7、B【解析】【分析】根据同类项的概念可得关于n的一元一次方程,求解方程即可得到n的值.【详解】解:与是同类项,n+1=4,解得,n=3,故选:B.【考点】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同8、B【解析】【分析】根据去括号法则,先去小括号,再去中括号,然后去大括号,即可求解【详解】解:故选:B【考点】本题主要考查了去括号,熟练掌握去括号法则:括号前面是“+”号,去掉括号和括号前面的“+”号,括号里的各项都不改变符号;括号前面是“-”号,去掉括号和括号前面的“-”号,括号里的各项都改变符号是解题的关键9、
9、C【解析】【分析】-a不一定是负数,例如a=0时;0.5ab中字母为a与b,指数和为2,故是二次单项式,本选项正确;倒数等于它本身的数是1,本选项正确;若|a|=-a,a为非正数,本选项错误;由-2(x-4)=2两边除以-2得到x-4=-1,本选项正确【详解】-a不一定是负数,例如a=0时,-a=0,不是负数,本选项错误;0.5ab是二次单项式,本选项正确;倒数等于它本身的数是1,本选项正确;若|a|=-a,则a0,本选项错误;由-2(x-4)=2两边除以-2得:x-4=-1,本选项正确,则其中正确的选项有3个故选C【考点】此题考查了等式的性质,相反数,绝对值,倒数,以及单项式,熟练掌握各自的
10、定义是解本题的关键10、C【解析】【分析】不难发现横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1,根据此规律即可知第50个有序数对.【详解】观察发现,横坐标依次是:1、1、2、1、2、3、1、2、3、4、1、2、3、4、5,纵坐标依次是:1、2、1、3、2、1、4、3、2、1、5、4、3、2、1,第46、47、48、49、50个有序数对依次是、.所以C选项是正确的.【考点】本题主要考查了点的坐标探索规律题,找出有序数对的横、纵坐标变化规律是解决问题的关键.二、填空题1、【解析】【分析】原式去括号
11、合并整理后,将a+8b的值代入计算即可求值【详解】原式=3a-6b-5a-10b=-2a-16b=-2(a+8b),当a+8b=-5时,原式=10故答案为10【考点】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键2、8【解析】【分析】根据多项式的项、次数的定义可得这个多项式中不含,且的次数为3,由此可得出的值,再代入计算即可得【详解】解:由题意得:,即,则,故答案为:8【考点】本题考查了多项式的项和次数,掌握理解定义是解题关键3、4【解析】【分析】根据题意可知:单项式与单项式是同类项,然后根据同类项的定义即可求出m和n,从而求出结论【详解】解:单项式与单项式的和仍然是单项式,单
12、项式与单项式是同类项,m=3,n=14故答案为:4【考点】此题考查的是求同类项的指数中的参数,掌握合并同类项法则和同类项的定义是解题关键4、 五 五 -4a5+a3b-a2+3ab2+3【解析】【分析】根据每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数定义进行判断【详解】解:原多项式的最高次项是-4a5,次数是5次,一共有5项,因此是五项式;a3b次数是4,3ab2次数是3,-a2次数是2,按a的降幂排列的结果:4a5+a3ba2+3ab2+3;故答案为:五、五、4a5+a3ba2+3ab2+3【考点】本题考查了多项式,掌握多项式的项、多项式的次数的定义,把每个单项式的次
13、数判断出是按a的降幂排列解题的关键5、8【解析】【详解】解:2m3n=4,原式=mn4mmn+6n=4m+6n=2(2m3n)=2(4)=8,故答案为:8三、解答题1、,.【解析】【分析】先去括号,再合并同类项,最后将a和b的值代入即可.【详解】原式将代入得:原式.【考点】本题考查了整式的加减:合并同类项,熟练掌握运算法则是解题关键.2、30【解析】【分析】将已知的两个等式相加得到(x+y)2=27,将已知的两个等式相减得到x2-y2=-3,即可得出答案.【详解】解:因为,所以,=27,所以 ,=30.故答案为30.【考点】本题考查了整式的混合运算化简求值.3、 (1)(2)变化,当时取得最大
14、值4【解析】【分析】(1)根据点A,B,C表示的数,即可求出AB, AC的长;(2)根据题意分别求得点A表示的数为-2-2t,点B表示的数为3t,点C表示的数为6+4t,根据两点距离求得,进而根据整式的加减进行计算即可(1)解:AB=0-(-2)=2, AC=(2)当运动时间为t秒时,点A表示的数为-2-2t,点B表示的数为3t,点C表示的数为6+4t,则,当时,的值最大,最大值为【考点】本题考查了列代数式、数轴以及两点间的距离,解题的关键是:(1)根据三个点表示的数,求出三条线段的长度;(2)利用含t的代数式表示出BC,AB的长4、阴影部分的面积为【解析】【分析】根据阴影部分面积=大长方形面积-空白部分长方形面积进行求解即可【详解】解:由题意得:,阴影部分的面积为【考点】本题考查列代数式,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型5、(1)x2y+xy2;(2)【解析】【分析】原式去括号合并同类项得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值【详解】(1)原式=原式=(2)原式=代数式的值与无关,4-k=0,【考点】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键