收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx

上传人:a**** 文档编号:641574 上传时间:2025-12-12 格式:DOCX 页数:34 大小:786.36KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第1页
第1页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第2页
第2页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第3页
第3页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第4页
第4页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第5页
第5页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第6页
第6页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第7页
第7页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第8页
第8页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第9页
第9页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第10页
第10页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第11页
第11页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第12页
第12页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第13页
第13页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第14页
第14页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第15页
第15页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第16页
第16页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第17页
第17页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第18页
第18页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第19页
第19页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第20页
第20页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第21页
第21页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第22页
第22页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第23页
第23页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第24页
第24页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第25页
第25页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第26页
第26页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第27页
第27页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第28页
第28页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第29页
第29页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第30页
第30页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第31页
第31页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第32页
第32页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第33页
第33页 / 共34页
2022-2023学年度人教版九年级数学上册第二十四章圆综合测试试卷(解析版).docx_第34页
第34页 / 共34页
亲,该文档总共34页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆综合测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点A,B的坐标分别为,点C为坐标平面内一点,点M为线段的中点,连接,则的最大值为( )ABCD2、如图,、为O

2、的切线,切点分别为A、B,交于点C,的延长线交O于点D下列结论不一定成立的是()A为等腰三角形B与相互垂直平分C点A、B都在以为直径的圆上D为的边上的中线3、如图,点B,C,D在O上,若BCD130,则BOD的度数是()A50B60C80D1004、如图,、为的切线,、为切点,点为弧上一点,过点作的切线分别交、于、,若,则的周长等于()ABCD5、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD6、一个等腰直角三角形的内切圆与外接圆的半径之比为()ABCD7、如图,在四边形ABCD中,则AB()A4B5CD8、如图,O的直径垂直于弦,垂足为若,则的长是

3、()ABCD9、下列说法中,正确的是()A长度相等的弧是等弧B平分弦的直径垂直于弦,并且平分弦所对的两条弧C经过半径并且垂直于这条半径的直线是圆的切线D在同圆或等圆中90的圆周角所对的弦是这个圆的直径10、已知扇形的半径为6,圆心角为则它的面积是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用反证法证明:“如果两条直线都和第三条直线平行,那么这两条直线也互相平行”.第一步应假设:_2、如图,在中,以点为圆心、为半径的圆交于点,则弧AD的度数为_度3、如图,已知点C是O的直径AB上的一点,过点C作弦DE,使CD=CO若AD的度数为35,则的度数是_4、如图,

4、AB是O的直径,弦CDAB于点E若AB10,AE1,则弦CD的长是_5、如图,在中,点是的中点,连接交弦于点,若,则的长是_三、解答题(5小题,每小题10分,共计50分)1、如图,在ABC 中,ABAC,BAC120,点 D 在边 BC 上,O 经过点 A 和点 B且与边 BC 相交于点 D(1)判断 AC 与O 的位置关系,并说明理由(2)当 CD5 时,求O 的半径2、在平面直角坐标系中,对于点,给出如下定义:当点满足时,称点Q是点P的等和点已知点(1)在,中,点P的等和点有_;(2)点A在直线上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点和线段MN,对于所有满足的点C,线

5、段MN上总存在线段PC上每个点的等和点若MN的最小值为5,直接写出b的取值范围3、已知四边形内接于O,垂足为E,垂足为F,交于点G,连接(1)求证:;(2)如图1,若,求O的半径;(3)如图2,连接,交于点H,若,试判断是否为定值,若是,求出该定值;若不是,说明理由4、(1)如图,在ABC中,AB=4,AC=3,若AD平分BAC交于点,那么点到的距离为 (2)如图,四边形内接于,为直径,点B是半圆的三等分点(弧弧),连接,若平分,且,求四边形的面积(3)如图,为把“十四运”办成一届精彩圆满的体育盛会很多公园都在进行花卉装扮,其中一块圆形场地圆O,设计人员准备在内接四边形ABCD区域内进行花卉图

6、案设计,其余部分方便游客参观,按照设计要求,四边形ABCD满足ABC=60,AB=AD,且AD+DC=10(其中 ),为让游客有更好的观体验,四边形ABCD花卉的区域面积越大越好,那么是否存在面积最大的四边形ABCD?若存在,求出这个最大值,不存在请说明理由5、如图,为的直径,过圆上一点作的切线交的延长线与点,过点作交于点,连接(1)直线与相切吗?并说明理由;(2)若,求的长-参考答案-一、单选题1、B【解析】【分析】如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解

7、答【详解】解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OMON+MN,则当ON与MN共线时,OM= ON+MN最大,则ABO为等腰直角三角形,AB=,N为AB的中点,ON=,又M为AC的中点,MN为ABC的中位线,BC=1,则MN=,OM=ON+MN=,OM的最大值为故答案选:B【考点】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大2、B【解析】【分析】连接OB,OC,令M为OP中点,连接MA,MB,证明RtOPBRtOPA,可得BP=AP,OPB=OPA,BOC=AOC,可推出为等腰三角形,可判断A;根据

8、OBP与OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明OBCOAC,可得PCAB,根据BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,B,C为切点,OBP=OAP=90,OA=OB,OP=OP,RtOPBRtOPA,BP=AP,OPB=OPA,BOC=AOC,为等腰三角形,故A正确;OBP与OAP为直角三角形,OP为斜边,PM=OM=BM=AM点A、B都在以为直径的圆上,故C正确;BOC=AOC,OB=OA,OC=OC,OBCOAC,OCB=OCA=90,PCAB,BPA为等腰三角形,为的

9、边上的中线,故D正确;无法证明与相互垂直平分,故选:B【考点】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键3、D【解析】【分析】首先圆上取一点A,连接AB,AD,根据圆的内接四边形的性质,即可得BAD+BCD=180,即可求得BAD的度数,再根据圆周角的性质,即可求得答案【详解】圆上取一点A,连接AB,AD,点A、B,C,D在O上,BCD=130,BAD=50,BOD=100.故选D【考点】此题考查了圆周角的性质与圆的内接四边形的性质此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法4、B【解析】【分析】由切线长定理可得,然后

10、根据线段之间的转化即可求得的周长【详解】、为的切线,所以,又为的切线,的周长故选:B【考点】此题考查了圆中切线长定理的运用,解题的关键是熟练掌握切线长定理5、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决6、D【解析】【分析】设

11、等腰直角三角形的直角边是1,则其斜边是根据直角三角形的内切圆半径是两条直角边的和与斜边的差的一半,得其内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是所以它们的比为=【详解】解:设等腰直角三角形的直角边是1,则其斜边是;内切圆半径是,外接圆半径是,所以它们的比为=故选:D【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半7、D【解析】【分析】延长AD,BC交于点E,则E=30,先在RtCDE中,求得CE的长,然后在RtABE中,根据E的正切函

12、数求得AB的长【详解】如图,延长AD,BC交于点E,则E=30,在RtCDE中,CE=2CD=6(30锐角所对直角边等于斜边的一半),BE=BC+CE=8,在RtABE中,AB=BEtanE=8=.故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.8、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形的性质,垂径定理等知识点,能求出CE=DE是解此题的关键9、D【解析】【分析】根据切线的判定,圆的知识,可得

13、答案【详解】解:A、在等圆或同圆中,长度相等的弧是等弧,故A错误;B、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,故B错误;C、经过半径的外端并且垂直于这条半径的直线是圆的切线,故C错误;D、在同圆或等圆中90的圆周角所对的弦是这个圆的直径,故D正确;故选D【考点】本题考查了切线的判定及圆的知识,利用圆的知识及切线的判定是解题关键10、D【解析】【分析】已知扇形的半径和圆心角度数求扇形的面积,选择公式直接计算即可【详解】解:故选:D【考点】本题考查扇形面积公式的知识点,熟知扇形面积公式及适用条件是解题的关键二、填空题1、这两条直线不平行【解析】【分析】本题需先根据已知条件和反证法

14、的特点进行证明,即可求出答案【详解】证明:已知两条直线都和第三条直线平行;假设这两条直线不平行,则两条直线有交点,因为过直线外一点有且只有一条直线与已知直线平行因此,两条直线有交点时,它们不可能同时与第三条直线平行因此假设与结论矛盾故假设不成立,即如果两条直线都和第三条直线平行,那么这两条直线也互相平行故答案为:这两条直线不平行【考点】本题主要考查了反证法,在解题时要根据反证法的特点进行证明是本题的关键2、【解析】【分析】由三角形内角和得A=90B=65再由AC=CD,ACD度数可求,可解【详解】连接CDACB=90,B=25,A=90B=65CA=CD,A=CDA=65,ACD=1802A=

15、50,弧AD的度数是50度【考点】本题考查了直角三角形,三角形内角和定理和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、105【解析】【分析】连接OD、OE,根据圆心角、弧、弦的关系定理求出AOD=35,根据等腰三角形的性质和三角形内角和定理计算即可【详解】解:连接OD、OE,的度数为35,AOD=35,CD=CO,ODC=AOD=35,OD=OE,ODC=E=35,DOE=180-ODC-E=180-35-35=110,AOE=DOE-AOD=110-35=75,BOE=180-AOE=180-75=105,的度数是105故答案为105【考点】本题

16、考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等4、6【解析】【分析】连接OC,根据勾股定理求出CE,根据垂径定理计算即可【详解】连接OC,AB是O的直径,弦CDAB,CD2CE,OEC90,AB10,AE1,OC5,OE514,在RtCOE中,CE3,CD2CE6,故答案为6【考点】本题考查了垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键5、8【解析】【分析】连结OA,OB,点是的中点,半径交弦于点,根据垂径定理可得OCAB,AD=BD,由,求半径OC= 5,OA= 5,在RtOAD中,由勾股定理得DA=即可,【详

17、解】解:连结OA,OB,点是的中点,半径交弦于点,OCAB,AD=BD,OC=OD+CD=3+2=5,OA=OC=5,在RtOAD中,由勾股定理得DA=,AB=2AD=24=8,故答案为8【考点】本题考查垂径定理的推论,勾股定理,线段中点定义,掌握垂径定理的推论,平分弧的直径垂直平分这条弧所对的弦,勾股定理,线段中点定义是解题关键三、解答题1、 (1)AC 与O相切,理由见解析(2)O 的半径为5【解析】【分析】(1)连接AO,根据等腰三角形的性质得到B=C=30,BAO=B=30,求得AOC=60,根据三角形的内角和得到OAC=180-60-30=90,于是得到AC是O的切线;(2)连接AD

18、,推出AOD是等边三角形,得到AD=OD,ADO=60,求得DAC=ADO-C=30,得到AD=CD=5,于是得到结论(1)解: AC是O的切线,理由如下:连接AO,AB=AC,BAC=120,B=C=(180-BAC)=30,AO=BO,BAO=B=30,AOC=2B=60,OAC=180-AOC-C=180-60-30=90,AO是O的半径,AC是O的切线;(2)解:连接AD,AO=OD,AOD=60,AOD是等边三角形,AD=OD,ADO=60,DAC=ADO-C=30,DAC=C=30,AD=CD=OD=5,D的半径为5【考点】本题考查了切线的判定和性质,等腰三角形的性质,等边三角形的

19、判定和性质,正确的作出辅助线是解题的关键2、 (1),;(2);(3)【解析】【分析】(1)根据新定义计算即可;(2)由(1)可知,P的等和点纵坐标比横坐标大2,根据等和点的定义,A的横坐标比纵坐标大2,由此可得方程,求解即可;(3)因为线段MN上总存在线段PC上每个点的等和点且MN的最小值为5,所以PC的最大距离不能超过5,分别找到点P和点C的等和点所在的区域或直线,然后得到MN取得最大值时,b的边界即可(1)解:由题意可知:,点Q1是点P的等和点;,点Q2不是点P的等和点;,点Q3是点P的等和点;点P的等和点有,(2)解:设,由(1)可知,P的等和点纵坐标比横坐标大2,点P的等和点也是点A

20、的等和点,A的横坐标比纵坐标大2,则,解之得:,故,(3)解:P(2,0),P点的等和点在直线y=x+2上,B(b,0),B点的等和点在直线y=x+b上,设直线y=x+b与y轴的交点为B(0,b),BC=1,C点在以B为圆心,半径为1的圆上,点C的等和点是两条直线及其之间与其平行的所有平行线上,以B为圆心,1为半径作圆,过点B作y=x+2的垂线交圆与N点,交直线于M点,MN的最小值为5,BM最小值为4,在RtBMP中,BP=,PB=,OB=,同理当B点在y轴左侧时OB=,b【考点】本题考查新定义,涉及到平面直角坐标系,坐标轴上两点之间的距离,一次函数,解题的关键是理解题意,根据题意进行求解,(

21、3)较难,需理解题意将其转化为求PC最大值问题3、 (1)证明见详解(2)(3)为定值,【解析】【分析】(1)由,可证明,由圆周角定理可知,可证明,再借助对顶角相等可知,进而证明,即可推导出;(2)由(1)可知,AC为DG的垂直平分线,即有,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,利用垂径定理和圆周角定理推导, ,;再借助,可证明,进而得到,即可证明,即有;在中,利用勾股定理计算OC的长,即可得到O的半径;(3)过点H作,垂足分别为P、Q,过点D作于点K,由已知条件、三角函数函数及含30角的直角三角形的性质,先计算出,再根据,可得出,整理可得(1)证明:,;(2)解:由(1)可

22、知,即AC为DG的垂直平分线,如图1,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,则有,同理,即,在和中, ,在中,即圆O的半径为;(3)为定值,且,证明如下:如图2,过点H作,垂足分别为P、Q,过点D作于点K,即,且,在中,即有,即 ,【考点】本题主要考查了圆周角定理、垂径定理、等腰三角形的判定与性质、全等三角形的判定与性质、角平分线的性质及利用三角函数解直角三角形等知识,综合性较强,解题关键是熟练掌握相关知识并能够综合运用4、(1);(2) 四边形ABCD的面积为32;(3)存在【解析】【分析】(1)如图,作辅助线,证明AE=DE;证明BDEBCA ,得到,列出比例式即可解决问

23、题(2)(2)连接OB,根据题意得AOB=60,作AEBD,利用解直角三角形可求AB的长,通过解直角三角形分别求出BC,AD,CD的长,再根据面积公式求解即可;过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC,可得,根据面积法求出关于面积的二次函数关系式,根据二次函数的性质求出最值即可【详解】解:如图,过点D作DEAB于点E则DE/AC;AD平分BAC,BAC=90,DAE=45,ADE=9045=45,AE=DE(设为),则BE=4;DE/AC, BDEBCA,即:解得:= ,点D到AC的距离(2)连接OB, 点B是半圆AC的三等分点(弧AB弧BC), AC是的直径, BD平

24、分ABC过点A作AEBD于点E,则AE=BE设AE=BE=x,则BD=BE+DE=x=BC=BD平分ABC AD=CD AEDE , = = =32;(3)过点A作ANBC于点N,AMDC,交DC的延长线于点M,连接AC, AB=ADACB=ACDAM=ANADC+ABC=180,ADC+ADM=180,ABC=ADM又ANB=AMD=90,ABNADM AN=AM,BCA=DCA,AC=ACACNACM ABC=60ADC=120ADM=60,MAD=30设DM=x,则AD=2x, ,即抛物线对称轴为x=5当x=4时,有最大值,为【考点】本题属于圆综合题,考查了三角形的面积,解直角三角形,角平分线的性质定理,圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题5、 (1)相切,见解析(2)【解析】【分析】(1)先证得:,再证,得到,即可求出答案;(2)设半径为;则:,即可求得半径,再在直角三角形中,利用勾股定理,求解即可(1)证明:连接为切线,又,且,在与中;,直线与相切(2)设半径为;则:,得;在直角三角形中,解得【考点】本题主要考查与圆相关的综合题型,涉及全等三角形的判定和性质等知识,熟练掌握平行线性质、勾股定理及全等三角形的判定和性质是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1