收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx

上传人:a**** 文档编号:641523 上传时间:2025-12-12 格式:DOCX 页数:30 大小:594.28KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第1页
第1页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第2页
第2页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第3页
第3页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第4页
第4页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第5页
第5页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第6页
第6页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第7页
第7页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第8页
第8页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第9页
第9页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第10页
第10页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第11页
第11页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第12页
第12页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第13页
第13页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第14页
第14页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第15页
第15页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第16页
第16页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第17页
第17页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第18页
第18页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第19页
第19页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第20页
第20页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第21页
第21页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第22页
第22页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第23页
第23页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第24页
第24页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第25页
第25页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第26页
第26页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第27页
第27页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第28页
第28页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第29页
第29页 / 共30页
2022-2023学年度人教版九年级数学上册第二十四章圆定向测评试卷(含答案详解版).docx_第30页
第30页 / 共30页
亲,该文档总共30页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十四章圆定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD2、一个等腰直角三角形的内切圆与外接圆的半径之比为()ABC

2、D3、如图,、为的切线,、为切点,点为弧上一点,过点作的切线分别交、于、,若,则的周长等于()ABCD4、一个商标图案如图中阴影部分,在长方形中,以点为圆心,为半径作圆与的延长线相交于点,则商标图案的面积是()ABCD5、如图,在ABC中,ACB90,ACBC,AB4cm,CD是中线,点E、F同时从点D出发,以相同的速度分别沿DC、DB方向移动,当点E到达点C时,运动停止,直线AE分别与CF、BC相交于G、H,则在点E、F移动过程中,点G移动路线的长度为()A2BC2D6、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断7、如图,、为O的切线,切点分别为

3、A、B,交于点C,的延长线交O于点D下列结论不一定成立的是()A为等腰三角形B与相互垂直平分C点A、B都在以为直径的圆上D为的边上的中线8、如图,在中,cm,cm是边上的一个动点,连接,过点作于,连接,在点变化的过程中,线段的最小值是()A1BC2D9、如图,已知中,如果以点为圆心的圆与斜边有公共点,那么的半径的取值范围是()ABCD10、如图所示,一个半径为r(r1)的图形纸片在边长为10的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分面积是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图是四个全等的正八边形和一个正方形拼成的图案,已

4、知正方形的面积为4,则一个正八边形的面积为_2、如图,在正五边形ABCDE中,AC与BE相交于点F,则AFE的度数为_3、如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F若BD4,CAB36,则图中阴影部分的面积为_(结果保留)4、如图,已知是的直径,是的切线,连接交于点,连接若,则的度数是_5、如图,矩形ABCD的对角线交于点O,以点A为圆心,AB的长为半径画弧,刚好过点O,以点D为圆心,DO的长为半径画弧,交AD于点E,若AC2,则图中阴影部分的面积为_(结果保留)三、解答题(5小题,每小题10分,共计50分)1、正方形ABC

5、D的四个顶点都在O上,E是O上的一点(1)如图,若点E在上,F是DE上的一点,DF=BE求证:ADFABE;(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE-BE=AE请说明理由;(3)如图,若点E在上连接DE,CE,已知BC=5,BE=1,求DE及CE的长2、已知P为O上一点,过点P作不过圆心的弦PQ,在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若

6、AB平行于ON,探究与的数量关系。3、已知:求作:,使它经过点和点,并且圆心在的平分线上,4、如图,以RtABC的AC边为直径作O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD(1)求证:EF是O的切线;(2)若O的半径为2,EAC60,求AD的长5、问题提出(1)如图,在ABC中,ABAC10,BC12,点O是ABC的外接圆的圆心,则OB的长为 问题探究(2)如图,已知矩形ABCD,AB4,AD6,点E为AD的中点,以BC为直径作半圆O,点P为半圆O上一动点,求E、P之间的最大距离;问题解决(3)某地有一块如图所示的果园,果园是由四边形ABCD和弦CB

7、与其所对的劣弧场地组成的,果园主人现要从入口D到上的一点P修建一条笔直的小路DP已知ADBC,ADB45,BD120米,BC160米,过弦BC的中点E作EFBC交于点F,又测得EF40米修建小路平均每米需要40元(小路宽度不计),不考虑其他因素,请你根据以上信息,帮助果园主人计算修建这条小路最多要花费多少元?-参考答案-一、单选题1、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键2、D【解析】【分析】设等腰直角三角形的直角边是1,则其斜边是根据直角三角形的

8、内切圆半径是两条直角边的和与斜边的差的一半,得其内切圆半径是;其外接圆半径是斜边的一半,得其外接圆半径是所以它们的比为=【详解】解:设等腰直角三角形的直角边是1,则其斜边是;内切圆半径是,外接圆半径是,所以它们的比为=故选:D【考点】本题考查三角形的内切圆与外接圆的知识,解题的关键是熟记直角三角形外接圆的半径和内切圆的半径公式:直角三角形的内切圆半径等于两条直角边的和与斜边的差的一半;直角三角形外接圆的半径是斜边的一半3、B【解析】【分析】由切线长定理可得,然后根据线段之间的转化即可求得的周长【详解】、为的切线,所以,又为的切线,的周长故选:B【考点】此题考查了圆中切线长定理的运用,解题的关键

9、是熟练掌握切线长定理4、D【解析】【分析】根据题意作辅助线DE、EF使BCEF为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案【详解】解:作辅助线DE、EF使BCEF为一矩形则SCEF=(8+4)42=24cm2,S正方形ADEF=44=16cm2,S扇形ADF=4cm2,阴影部分的面积=24-(16-4)=故选:D【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的5、D【解析】【分析】【详解】解:如图,CACB,ACB90,ADDB,CDAB,ADECDF90,CDADDB

10、,在ADE和CDF中,ADECDF(SAS),DAEDCF,AEDCEG,ADECGE90,A、C、G、D四点共圆,点G的运动轨迹为弧CD,AB4,ABAC,AC2,OAOC,DADC,OAOC,DOAC,DOC90,点G的运动轨迹的长为故选:D6、A【解析】【分析】过点C作CDAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键7、B【解析】【分析】连

11、接OB,OC,令M为OP中点,连接MA,MB,证明RtOPBRtOPA,可得BP=AP,OPB=OPA,BOC=AOC,可推出为等腰三角形,可判断A;根据OBP与OAP为直角三角形,OP为斜边,可得PM=OM=BM=AM,可判断C;证明OBCOAC,可得PCAB,根据BPA为等腰三角形,可判断D;无法证明与相互垂直平分,即可得出答案【详解】解:连接OB,OC,令M为OP中点,连接MA,MB,B,C为切点,OBP=OAP=90,OA=OB,OP=OP,RtOPBRtOPA,BP=AP,OPB=OPA,BOC=AOC,为等腰三角形,故A正确;OBP与OAP为直角三角形,OP为斜边,PM=OM=BM

12、=AM点A、B都在以为直径的圆上,故C正确;BOC=AOC,OB=OA,OC=OC,OBCOAC,OCB=OCA=90,PCAB,BPA为等腰三角形,为的边上的中线,故D正确;无法证明与相互垂直平分,故选:B【考点】本题考查了全等三角形的判定与性质,等腰三角形的判定与性质,圆的性质,掌握知识点灵活运用是解题关键8、A【解析】【分析】由AEC90知,点E在以AC为直径的M的上(不含点C、可含点N),从而得BE最短时,即为连接BM与M的交点(图中点E点),BE长度的最小值BEBMME【详解】如图,由题意知,在以为直径的的上(不含点、可含点,最短时,即为连接与的交点(图中点点),在中,则,长度的最小

13、值,故选:【考点】本题主要考查了勾股定理,圆周角定理,三角形的三边关系等知识点,难度偏大,解题时,注意辅助线的作法9、C【解析】【分析】作CDAB于D,根据勾股定理计算出AB=13,再利用面积法计算出然后根据直线与圆的位置关系得到当时,以C为圆心、r为半径作的圆与斜边AB有公共点【详解】解:作CDAB于D,如图,C=90,AC=3,BC=4,以C为圆心、r为半径作的圆与斜边AB有公共点时,r的取值范围为故选:C【考点】本题考查了直线与圆的位置关系:设O的半径为r,圆心O到直线l的距离为d:直线l和O相交dr;直线l和O相切d=r;直线l和O相离dr10、C【解析】【分析】当运动到正六边形的角上

14、时,圆与两边的切点分别为,连接,根据正六边形的性质可知,故,再由锐角三角函数的定义用表示出的长,可知圆形纸片不能接触到的部分的面积,由此可得出结论【详解】解:如图所示,连接,此多边形是正六边形,圆形纸片不能接触到的部分的面积故选:C【考点】本题考查的是正多边形和圆,熟知正六边形的性质是解答此题的关键二、填空题1、【解析】【分析】根据正方形的性质得到AB=2,根据由正八边形的特点求出AOB的度数,过点B作BDOA于点D,根据勾股定理求出BD的长,由三角形的面积公式求出AOB的面积,进而可得出结论【详解】解:设正八边形的中心为O,连接OA,OB,如图所示,正方形的面积为4,AB=2,AB是正八边形

15、的一条边,AOB=45过点B作BDOA于点D,设BD=x,则OD=x,OB=OA=x,AD=x-x,在RtADB中,BD2+AD2=AB2,即x2+(x-x)2=22,解得x2=2+,SAOB=OABD=x2=+1,S正八边形=8SAOB=8(+1)=8+8,故答案为:8+8【考点】本题考查的是正多边形和圆,正方形的性质,三角形面积的计算,根据题意画出图形,利用数形结合求解是解答此题的关键2、72【解析】【分析】首先根据正五边形的性质得到AB=BC=AE,ABC=BAE=108,然后利用三角形内角和定理得BAC=BCA=ABE=AEB=(180108)2=36,最后利用三角形的外角的性质得到A

16、FE=BAC+ABE=72【详解】五边形ABCDE为正五边形,AB=BC=AE,ABC=BAE=108,BAC=BCA=ABE=AEB=(180108)2=36,AFE=BAC+ABE=72,故答案为72【考点】本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键3、【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可【详解】解:矩形ABCD的对角线AC,BD交于点O,且BD=4,AC=BD4,OA=OC=OB=OD=2,故答案为:【考点】本题考查了矩形的性质,扇形的面积等知识,正确的识别图形是解题的关键4、25【解析】【分析】先由切线的性质可得OA

17、C=90,再根据三角形的内角和定理可求出AOD=50,最后根据“同弧所对的圆周角等于圆心角的一半”即可求出B的度数【详解】解:是的切线,OAC=90,AOD=50,B=AOD=25故答案为:25【考点】本题考查了切线的性质和圆周角定理,掌握圆周角定理是解题的关键5、【解析】【分析】由图可知,阴影部分的面积是扇形ABO和扇形DEO的面积之和,然后根据题目中的数据,可以求得AB、OA、DE的长,BAO和EDO的度数,从而可以解答本题【详解】解:四边形ABCD是矩形,OAOCOBOD,ABAO,ABO是等边三角形,BAO60,EDO30,AC2,OAOD1,图中阴影部分的面积为:,故答案为:【考点】

18、本题主要考查扇形面积、矩形的性质及等边三角形的性质与判定,熟练掌握扇形面积、矩形的性质及等边三角形的性质与判定是解题的关键三、解答题1、(1)证明见解析;(2)理由见解析;(3)DE=7,CE=【解析】【分析】(1)根据正方形的性质,得AB=AD;根据圆周角的性质,得,结合DF=BE,即可完成证明;(2)由(1)结论得AF=AE,;结合BAD=90,得EAF=90,从而得到EAF是等腰直角三角形,即EF=AE;最后结合DE-DF=EF,从而得到答案;(3)连接BD,将CBE绕点C顺时针旋转90至CDH;结合题意,得CBE+CDE=180,从而得到E,D,H三点共线;根据BC=CD,得,从而推导

19、得BEC=DEC=45,即CEH是等腰直角三角形;再根据勾股定理的性质计算,即可得到答案【详解】(1)如图,在正方形ABCD中,AB=AD在ADF和ABE中ADFABE(SAS);(2)由(1)结论得:ADFABEAF=AE,3=4正方形ABCD中,BAD=90BAF+3=90BAF+4=90EAF=90EAF是等腰直角三角形EF2=AE2+AF2EF2=2AE2EF=AE即DE-DF=AEDE-BE=AE;(3)连接BD,将CBE绕点C顺时针旋转90至CDH四边形BCDE内接于圆CBE+CDE=180E,D,H三点共线在正方形ABCD中,BAD=90BED=BAD=90BC=CDBEC=DE

20、C=45CEH是等腰直角三角形在RtBCD中,由勾股定理得BD=BC=5在RtBDE中,由勾股定理得:DE=在RtCEH中,由勾股定理得:EH2=CE2+CH2(ED+DH)2=2CE2,即(ED+BE)2=2CE264=2CE2CE=4【考点】本题考查了正方形、圆、等腰三角形、勾股定理、全等三角形、旋转的知识;解题的关键是熟练掌握正方形、圆周角、正多边形与圆、等腰三角形、勾股定理、全等三角形、旋转的性质,从而完成求解2、(1);(2)+2=90,见解析【解析】【分析】(1)连接AB,由已知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半

21、径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,AB=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQAB,ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+PON+NOQ=180,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,

22、垂径定理,熟练掌握性质定理是解题的关键3、见详解【解析】【分析】要作圆,即需要先确定其圆心,先作A的角平分线,再作线段BC的垂直平分线相交于点O,即O点为圆心【详解】解:根据题意可知,先作A的角平分线,再作线段BC的垂直平分线相交于O,即以O点为圆心,OB为半径,作圆O,如下图所示:【考点】此题主要考查了学生对确定圆心的作法,要求学生熟练掌握应用4、(1)见解析;(2)AD【解析】【分析】(1)连接FO,可根据三角形中位线的性质可判断易证OFAB,然后根据直径所对的圆周角是直角,可得CEAE,进而知OFCE,然后根据垂径定理可得FECFCE,OECOCE,再通过RtABC可知OECFEC90,

23、因此可证FE为O的切线;(2)在RtOCD中和RtACD中,分别利用勾股定理分别求出CD,AD的长即可 【详解】(1)证明:连接CE,如图所示:AC为O的直径,AEC90BEC90,点F为BC的中点,EFBFCF,FECFCE,OEOC,OECOCE,FCE+OCEACB90,FEC+OECOEF90,EF是O的切线(2)解:OAOE,EAC60,AOE是等边三角形AOE60,CODAOE60,O的半径为2,OAOC2在RtOCD中,OCD90,COD60,ODC30,OD2OC4,CD在RtACD中,ACD90,AC4,CDAD 【考点】本题主要考查直角三角形、全等三角形的判定与性质以及与圆

24、有关的位置关系 5、(1);(2)E、P之间的最大距离为7;(3)修建这条小路最多要花费元【解析】【分析】(1)若AO交BC于K,则AK8,在RtBOK中,设OBx,可得x262+(8x)2,解方程可得OB的长;(2)延长EO交半圆于点P,可求出此时E、P之间的最大距离为OE+OP的长即可;(3)先求出所在圆的半径,过点D作DGBC,垂足为G,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,求出DP长即可求出修建这条小路花费的最多费用【详解】(1)如图,若AO交BC于K,点O是ABC的外接圆的圆心,ABAC,AKBC,BK,AK,在RtBOK中,OB2BK2+OK2,设OBx,x2

25、62+(8x)2,解得x,OB;故答案为:(2)如图,连接EO,延长EO交半圆于点P,可求出此时E、P之间的距离最大,在是任意取一点异于点P的P,连接OP,PE,EPEO+OPEO+OPEP,即EPEP,AB4,AD6,EO4,OPOC,EPOE+OP7,E、P之间的最大距离为7(3)作射线FE交BD于点M,BECE,EFBC,是劣弧,所在圆的圆心在射线FE上,假设圆心为O,半径为r,连接OC,则OCr,OEr40,BECE,在RtOEC中,r2802+(r40)2,解得:r100,OEOFEF60,过点D作DGBC,垂足为G,ADBC,ADB45,DBC45,在RtBDG中,DGBG,在RtBEM中,MEBE80,MEOE,点O在BDC内部,连接DO并延长交于点P,则DP为入口D到上一点P的最大距离,在上任取一点异于点P的点P,连接OP,PD,DPOD+OPOD+OPDP,即DPDP,过点O作OHDG,垂足为H,则OHEG40,DHDGHGDGOE60,,DPOD+r,修建这条小路最多要花费40元【考点】本题主要考查了圆的性质与矩形性质的综合运用,熟练掌握相关方法是解题关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1