收藏 分享(赏)

2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx

上传人:a**** 文档编号:641379 上传时间:2025-12-12 格式:DOCX 页数:31 大小:874.63KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第1页
第1页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第2页
第2页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第3页
第3页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第4页
第4页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第5页
第5页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第6页
第6页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第7页
第7页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第8页
第8页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第9页
第9页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第10页
第10页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第11页
第11页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第12页
第12页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第13页
第13页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第14页
第14页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第15页
第15页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第16页
第16页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第17页
第17页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第18页
第18页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第19页
第19页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第20页
第20页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第21页
第21页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第22页
第22页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第23页
第23页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第24页
第24页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第25页
第25页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第26页
第26页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第27页
第27页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第28页
第28页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第29页
第29页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第30页
第30页 / 共31页
2022-2023学年度人教版九年级数学上册第二十二章二次函数重点解析试题(解析卷).docx_第31页
第31页 / 共31页
亲,该文档总共31页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关

2、C与p、q的值都无关D与p有关,但与q无关2、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及其自变量x的取值范围均正确的是()Ay=x2+6x(3x6)By=x2+12x(0x12)Cy=x2+12x(6x12)Dy=x2+6x(0x6)3、根据下列表格的对应值:x6.176.186.196.20ax2bxc0.020.010.010.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.204、若y=(m1)是二次函数,则m=()A1B7C1或7D以上都不对5、抛物线

3、y=ax2+bx+3(a0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0d1,则实数m的取值范围是()Am2或m3Bm3或m4C2m3D3m46、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD7、已知抛物线的对称轴在轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则的值是()A或2BC2D8、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD9、二次函数yax2bxc的图象过点(1,0),对称轴

4、为直线x2,若a0,则下列结论错误的是()A当x2时,y随着x的增大而增大B(ac)2b2C若A(x1,m)、B(x2,m)是抛物线上的两点,当xx1x2时,ycD若方程a(x1)(5x)1的两根为x1、x2,且x1x2,则1x15x210、如图,抛物线的对称轴为直线,若关于的一元二次方程(为实数)在的范围内有解,则的取值错误的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_2、在平面直角坐标系中,已知抛物线ymx22mxm2(m0)(1)抛物线的顶点坐标为_;(2)点M(x1,y1)、N(

5、x2,y2)(x1x23)是拋物线上的两点,若y1y2,x2x12,则y2的取值范围为_(用含 m的式子表示)3、二次函数的部分图象如图所示,由图象可知,方程的解为_;不等式的解集为_4、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加_m.5、各种盛水容器可以制作精致的家用流水景观(如图1)科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为,如果在离水面竖直距离为h(单位:)的地方开大小合适的小孔,那么从小孔射出水的射程s(单位:)与h的关系式为,则射程s最大值是_(射程是指水流落地点离小孔的水平距离)三、解答题(5小题,每小题10分,共计50分)1、二

6、次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、直线与直线交于点,当时,求值2、如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点(1)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求面积的最大值及此时点N的坐标3、已知抛物线C:yax24(m1)x3m26m2(1)当a1,m0时,求抛物线C与x轴的交点个数;(2)当m0时,判断抛物线

7、C的顶点能否落在第四象限,并说明理由;(3)当m0时,过点(m,m22m2)的抛物线C中,将其中两条抛物线的顶点分别记为A,B,若点A,B的横坐标分别是t,t2,且点A在第三象限以线段AB为直径作圆,设该圆的面积为S,求S的取值范围4、已知抛物线(a,c为常数,)经过点,顶点为D()当时,求该抛物线的顶点坐标;()当时,点,若,求该抛物线的解析式;()当时,点,过点C作直线l平行于x轴,是x轴上的动点,是直线l上的动点当a为何值时,的最小值为,并求此时点M,N的坐标5、如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点(1)求这个二次函数的解析式;(2)求这个二次函数的对称轴、顶点坐

8、标;(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求ABC的面积-参考答案-一、单选题1、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键2、D

9、【解析】【分析】已知一边长为xcm,则另一边长为(6-x)cm,根据矩形的面积公式即可解答【详解】解:已知一边长为xcm,则另一边长为(6-x)cm则y=x(6-x)化简可得y=-x2+6x,(0x6),故选:D【考点】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x表示出矩形的另一边,此题难度一般3、C【解析】【分析】根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个解x的取值范围是 ,故选:C【考点】本题考查了估算一元二次方程的近似解,解答

10、此题的关键是利用函数的增减性4、B【解析】【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可【详解】由题意得:m2-6m-5=2;且m+10;解得m=7或-1;m-1,m=7,故选:B【考点】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为05、B【解析】【分析】把A(4,4)代入抛物线y=ax2+bx+3得4a+b=,根据对称轴x=-,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,所以0|2-(-)|1,解得a或a-,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,得到a=-,所以-或-,即可解答【详解】把A(4,4)代入抛物线y=ax2

11、+bx+3得:16a+4b+3=4,16a+4b=1,4a+b=,对称轴x=,B(2,m),且点B到抛物线对称轴的距离记为d,满足0d1,0|2()|10|1,|1,a或a,把B(2,m)代入y=ax2+bx+3得:4a+2b+3=m,2(2a+b)+3=m,2(2a+4a)+3=m,4a=m,a=-,-或-,m3或m4.故答案选:B.【考点】本题考查了二次函数的性质,解题的关键是熟练的掌握二次函数的性质.6、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线的顶点坐标为(-

12、2,1),所得抛物线对应的函数表达式为,故选B【考点】本题主要考查二次函数的平移规律,找出平移后二次函数图像的顶点坐标或掌握“左加右减,上加下减”,是解题的关键7、B【解析】【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可【详解】解:函数向右平移3个单位,得:;再向上平移1个单位,得:+1,得到的抛物线正好经过坐标原点+1即解得:或抛物线的对称轴在轴右侧00故选:B【考点】此题主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减8、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;

13、【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键9、D【解析】【分析】根据二次函数的性质即可判断A;根据对称轴得到b4a,经过点(1,0)得到c5a,从而求得a+c4a,即可判断B;由抛物线的对称性得到,结合xx1+x2,即可判断C;利用二次函数与一元二次方程的关系即可判断D【详解】解:二次函数yax2+bx+c中,a0,对称轴为直线x2,当x2时,y随着x的增大而增大,故A正确;2,b4a,二次函数

14、yax2+bx+c的图象过点(1,0),ab+c0,即a+4a+c0,c5a,a+c4a,(a+c)2b2,故B正确;A(x1,m)、B(x2,m)是抛物线上的两点,抛物线对称轴,2xx1+x2,xx1+x2,2xx,x0,此时,yax2+bx+cc,故C正确;抛物线的对称轴为直线x2,图象与x轴交于(1,0),抛物线x轴的另一个交点是(5,0),抛物线与直线y1的交点横坐标x11,x25,如图,方程a(x+1)(x5)1的两根为x1和x2,且x1x2,则1x1x25,故D错误故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,抛物线与x轴的交点,熟

15、练掌握二次函数的性质是解题的关键10、A【解析】【分析】已知抛物线的对称轴,可求出m=4,进而求出抛物线的解析式;把关于x的一元二次方程有解的问题,转化为抛物线与直线y=t的交点问题,可求出t的取值范围;最后将所给的四个选项逐一与t的范围加以对照,即可得出正确答案【详解】解:抛物线的对称轴为直线x=2,解得,m=4抛物线的解析式为当x=2时,抛物线的顶点坐标为(2,4)当x=1时,当x=3时,关于x的一元二次方程是,方程在的范围内有解,抛物线与直线y=t在范围内有公共点,如图所示故选:A【考点】本题考查了二次函数的对称轴、顶点坐标、与一元二次方程的关系等知识点,熟知二次函数的对称轴、顶点坐标的

16、计算方法是解题的基础,而熟知二次函数与一元二次方程的互相转化是解题的关键二、填空题1、(答案不唯一)【解析】【分析】设与交点为,根据题意关于y轴对称和二次函数的对称性,可找到的值(只需满足互为相反数且满足即可)即可写出一个符合条件的方程【详解】设与交点为,根据题意则的对称轴为故设则方程为:故答案为:【考点】本题考查了二次函数的对称性,二次函数与一元二次方程的关系,熟悉二次函数的性质和找到两根的对称性类比二次函数的对称性是解题的关键2、 (1,-2) 【解析】【分析】(1)将二次函数解析式化为顶点式求解;(2)抛物线的对称轴为直线x=1,得到当点M,N关于抛物线的对称轴对称时,x1+x2=2,结

17、合x2-x1=2,可得x1=0,x2 =2,得到当2x23时,y1y2,再将x=2、x=3代入函数关系式进行求解即可 【详解】(1),抛物线顶点坐标为(1,-2),故答案为 (1,-2)(2)抛物线的对称轴为直线x=1,当点M,N关于抛物线的对称轴对称时,x1+x2=2,结合x2-x1=2,可得x1=0,x2 =2,当2x23时,y1y2,对于y=m(x-1)2-2,当x =2时,y=m-2;当x=3时,y=4m-2,【考点】本题考查二次函数图象上的点的特征,解题关键是掌握二次函数与方程及不等式的关系3、 , 或【解析】【分析】根据抛物线的对称轴和抛物线与x轴一个交点求出另一个交点,再通过二次

18、函数与方程的两根,二次函数与不等式解集的关系求得答案【详解】抛物线的对称轴为,抛物线与x轴一个交点为(5,0)抛物线与x轴另一个交点为(-1,0)方程的解为:,由图像可知,不等式的解集为:或故答案为:,;或【考点】本题考查了二次函数的图像性质,掌握二次函数与方程的两根,二次函数与不等式的解集关系,是解决问题的关键4、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为A

19、B的一半2米,抛物线顶点C坐标为通过以上条件可设顶点式,其中可通过代入A点坐标 代入到抛物线解析式得出:所以抛物线解析式为 当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出: 解得:所以水面宽度增加到米,比原先的宽度当然是增加了 故答案是: 【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键5、20【解析】【分析】将s2=4h(20-h)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可【详解】解:s2=4h(20-h)=-4(h-

20、10)2+400,当h=10cm时,s有最大值20cm当h为10cm时,射程s有最大值,最大射程是20cm;故答案为:20【考点】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键三、解答题1、(1);(2)的值为,【解析】【分析】(1)由直线BC求出B、C的坐标,再代入二次函数的解析式,求出b、c的值,得出二次函数的解析式;(2)用含有m的代数式表示点E和点F的坐标,用相似三角形对应边成比例的性质列方程,求出m的值.【详解】(1)直线的解析式点,点和在抛物线上,解得:二次函数的解析式为:(2)二次函数与轴交于点、点轴交直线于点点轴,轴,轴交直线于点,点点

21、的坐标为,点的坐标为若点在原点右侧,如图1,则,即,解得:,;若点在原点左侧,如图2,则即,解得:,(舍去);综上所述,的值为,【考点】本题考查二次函数与几何的综合问题,熟练掌握二次函数的性质是本题的解题关键,解题时结合一次函数的性质,利用相似三角形的性质列方程,灵活应用函数图像上点的坐标特征.2、(1)点的坐标为,点的坐标为;(2)点P的坐标为(1,4),的最小值为;(3)面积的最大值为,此时点的坐标为【解析】【分析】(1)令抛物线解析式中即可求出点坐标,将抛物线的一般式化为顶点式,即可求出顶点坐标;(2)根据轴对称的性质可得线段BC与对称轴的交点即为点P,先利用待定系数法求出解析式,由此再

22、求出点P坐标即可;(3)过点作轴的垂线交直线于Q点,设,进而得到点坐标,最后根据求解即可【详解】解:(1)将代入,得:,点的坐标为,抛物线的顶点的坐标为;(2)如图,设线段BC与对称轴的交点为点P,连接AC,AP,根据轴对称的性质可得:,两点之间线段最短,此时最小,将代入,得: ,解得:,点的坐标为,设直线BC的解析式为,将,代入,得:,解得:,直线BC的解析式为,顶点的坐标为,抛物线的对称轴为直线,将代入,得,点P的坐标为(1,4);故此时的最小值为(3)过点作轴的垂线交直线于点,连接,如图1所示:设点坐标为,则点坐标为,其中,当时,有最大值为,将代入,得:,BCN面积的最大值为,此时点的坐

23、标为【考点】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式等知识,本题综合性较强,具有一定的难度,熟练掌握二次函数的图形和性质,学会用代数的方法求解几何问题是解决本题的关键3、(1)2个;(2)不能,见解析;(3)S5【解析】【分析】(1)由题意可知当a1,m0时,抛物线的表达式为:yx2+4x+2,80,故C与x轴的交点个数为2;(2)根据题意假设点C在第四象限,则0,且+20,即可求解;(3)由题意可知抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21);当m1t+1时,mt+

24、3,点B(t+2,t2+4t+3);点A在第三象限,即t0且t210,AB222+(4t+4)216(t+1)2+4,即可求解【详解】解:(1)当a1,m0时,抛物线的表达式为:yx2+4x+2,42-412=80,故C与x轴的交点个数为2个;(2)当m0时,判断抛物线C的顶点为:(,+2),假设点C在第四象限,则0,且+20,解得:0且1,故a无解,故顶点不能落在第四象限;(3)将点(m,m22m+2)代入抛物线表达式并整理得:(a2)m20,m0,故a2;则抛物线的表达式为:y2x24(m1)x+(3m26m+2),则顶点坐标为:(m1,m22m),当m1t时,mt+1,则点A(t,t21

25、);当m1t+2时,mt+3,点B(t+2,t2+4t+3);而点A在第三象限,即t0且t210,解得:1t0;yByA4t+40,故点B在点A的右上方,AB222+(4t+4)216(t+1)2+4,1t0时,4AB220;S()2,故S5【考点】本题考查的是二次函数综合运用,涉及到一次函数的性质、解不等式、圆的基本知识等,综合性强,弄清题意,正确运用相关知识是解题的关键4、()抛物线的顶点坐标为;()或;()点M的坐标为,点N的坐标为【解析】【分析】()结合题意,通过列一元一次方程并求解,即可得到抛物线的解析式,将解析式化为顶点式,即可得到答案()根据题意,得抛物线的解析式为;根据抛物线对

26、称轴的性质,计算得点D的坐标为;过点D作轴于点G,根据勾股定理和一元二次方程的性质,得,从而得到答案;()当时,将点向左平移3个单位长度,向上平移1个单位长度得;作点F关于x轴的对称点,当满足条件的点M落在线段上时,根据两点之间线段最短的性质,得最小,结合题意,根据勾股定理和一元二次方程性质,得,从而得直线的解析式,通过计算即可得到答案【详解】()当时,抛物线的解析式为抛物线经过点解得:抛物线的解析式为抛物线的顶点坐标为;()当时,由抛物线经过点,可知抛物线的解析式为抛物线的对称轴为:当时,抛物线的顶点D的坐标为;过点D作轴于点G在中,在中,即,解得:,抛物线的解析式为或()当时,将点向左平移

27、3个单位长度,向上平移1个单位长度得作点F关于x轴的对称点,得点的坐标为当满足条件的点M落在线段上时,最小,此时,过点作轴于点H在中,又,即解得:,(舍)点的坐标为,点的坐标为直线的解析式为当时,点M的坐标为,点N的坐标为【考点】本题考查了二次函数、一元一次方程、勾股定理、一元二次方程、平移、两点之间线段最短的知识;解题的关键是熟练掌握二次函数、勾股定理、一元二次方程、平移的性质,从而完成求解5、(1);(2)对称轴为x=4;顶点坐标为(4,2);(3)6【解析】【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入,算出b和c,即可得解析式(2)根据顶点坐标公式和对称轴公式即可求得;(3)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】解:(1)把A(2,0)、B(0,-6)代入得: 解得:这个二次函数的解析式为;(2),b=4,c=-6对称轴 ,顶点坐标为(4,2);(3)该抛物线对称轴为直线x=4, 点C的坐标为(4,0) AC=OC-OA=4-2=2,【考点】本题考查了待定系数法求二次函数的解析式,要会求二次函数的对称轴,会运用面积公式

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1