收藏 分享(赏)

2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx

上传人:a**** 文档编号:640708 上传时间:2025-12-12 格式:DOCX 页数:22 大小:474.42KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第1页
第1页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第2页
第2页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第3页
第3页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第4页
第4页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第5页
第5页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第6页
第6页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第7页
第7页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第8页
第8页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第9页
第9页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第10页
第10页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第11页
第11页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第12页
第12页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第13页
第13页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第14页
第14页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第15页
第15页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第16页
第16页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第17页
第17页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第18页
第18页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第19页
第19页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第20页
第20页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第21页
第21页 / 共22页
2022-2023学年度人教版九年级数学上册期中测试试题 卷(Ⅲ)(含详解).docx_第22页
第22页 / 共22页
亲,该文档总共22页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小

2、值4C有最大值6D有最小值62、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米3、如图,G是正方形ABCD内一点,以GC为边长,作正方形GCEF,连接BG和DE,试用旋转的思想说明线段BG与DE的关系()ADEBGBDEBGCDEBGDDEBG4、正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()ABCD5、二次函数的图象的对称轴是()ABCD二、多选题(5小

3、题,每小题4分,共计20分)1、如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是()Ab0Bab+c0C阴影部分的面积为4D若c=1,则b2=4a2、对于二次函数,下列说法不正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大3、下列方程不适合用因式方程解法解的是()Ax23x+2=0B2x2=x+4C(x1)(x+2)=70Dx211x10=04、如果关于的一元二次方程有两个相等的实根,那么对于以,为边的三

4、角形,下面的判断不正确的是()A以为斜边的直角三角形B以为斜边的直角三角形C以为底边的等腰三角形D以为底边的等腰三角形5、下列图形中,是中心对称图形的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知关于x的一元二次方程的一个根比另一个根大2,则m的值为_2、已知二次函数y(xm)2m21,且(1)当m1时,函数y有最大值_(2)当函数值y恒不大于4时,实数m的范围为_3、从喷水池喷头喷出的水珠,在空中形成一条抛物线,如图所示,在抛物线各个位置上,水珠的竖直高度(单位:)与它距离喷头的水平距离(单位:)之间满足函数关系式,喷出水珠的最大高度是_ 4、关于

5、的方程,k=_时,方程有实数根5、若点A(m,5)与点B(4,n)关于原点成中心对称,则mn_四、解答题(5小题,每小题8分,共计40分)1、判断2、5、-4是不是一元二次方程的根2、在平面直角坐标系中,抛物线的对称轴为求的值及抛物线与轴的交点坐标;若抛物线与轴有交点,且交点都在点,之间,求的取值范围3、某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元 线 封 密 内 号学级年名姓 线 封 密 外 (1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均

6、每天可卖出100箱如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?4、解下列方程(1)x22x0;(2)2x23x105、今年忠县柑橘喜获丰收,某果园销售的柑橘“忠橙”和“爱媛”很受消费者的欢迎,“忠橙”售价80元/箱,“爱媛”售价60元/箱在11月第一周“忠橙”的销量比“爱媛”的销量多100箱,且这两种柑橘的总销售额为50000元(1)在11月第一周,该果园“忠橙”和“爱媛”的销量各为多少箱?(2)为了扩大销售,11月第二周“忠橙”售价降价,销量比第一周培加了,“爱媛”售价不变,销量比第一周增加了,结果这两种相橘第二周的总销售额比第一周的

7、总销售额增加了,求的值-参考答案-一、单选题1、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值2、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,

8、DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0), 线 封 密 内 号学级年名姓 线 封 密 外 0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故

9、选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答3、A【解析】【分析】根据四边形ABCD为正方形,得出BC=DC,BCD=90,根据四边形CEFG为正方形,得出GC=EC,GCE=90,再证BCG=DCE,BCG与DCE具有可旋转的特征即可【详解】解:四边形ABCD为正方形,BC=DC,BCD=90,四边形CEFG为正方形,GC=EC,GCE=90,BCG+GCD=GCD+DCE=90,BCG=DCE,BCG绕点C顺时针方向旋转90得到DCE,BG=DE,故选项A【考点】本题考查图形旋转特征,正方形性质,三角形全等条件,同角的余角性质,掌握

10、图形旋转特征,正方形性质,三角形全等条件是解题关键4、C 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可【详解】解:新正方形的边长为x+4,原正方形的边长为4,新正方形的面积为(x+4)2,原正方形的面积为16,y=(x+4)2-16=x2+8x,故选:C【考点】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键5、A【解析】【分析】将二次函数写成顶点式,进而可得对称轴【详解】解:二次函数的图象的对称轴是故选A【考点】本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键二、多选题1、CD【解析

11、】【分析】根据抛物线的开口方向和抛物线的平移判断即可;【详解】抛物线开口向上,又对称轴,故A不正确;时,故B不正确;抛物线向右平移了2个单位,平行四边形的底时2,函数y=ax2+bx+c的最小值是,平行四边形的高是2,阴影部分的面积是,故C正确;,故D正确;故选CD【点睛】本题主要考查了二次函数图象与几何变换,准确分析判断是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 2、ACD【解析】【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确【详解】解:二次函数,a20,该函数的图象开口向上,故选项A错误,图象的对称轴是直线x1,故选项B正确,函数的最小值是y0,故选项C错

12、误,当x1时随的增大而增大,故选项D错误,故选:A,C,D【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答3、ABD【解析】【分析】根据因式分解法解一元二次方程的方法求解即可【详解】解:A、x23x+2=0,适用公式法,不适合用因式分解法来解题,符合题意;B、2x2=x+4,适用公式法,不适合用因式分解法来解题,符合题意;C、(x1)(x+2)=70,即,可得,故适合用因式分解法来解题,不符合题意;D、x211x10=0,适用公式法,不适合用因式分解法来解题,符合题意;故选:ABD【点睛】此题考查了解一元二次方程,解题的关键是熟练掌握解一元二次方

13、程的方法解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法4、BCD【解析】【分析】根据判别式的意义得到,再整理得到,然后根据勾股定理的逆定理进行判断【详解】解:根据题意得,整理得,所以三角形是以为斜边的直角三角形故选:BCD【点睛】本题考查了一元二次方程的根的判别式、勾股定理的逆定理,解题的关键是掌握当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根5、BD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,进而判断得出答案【详解】

14、解:A此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不符合题意;B此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意;C此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不合题意;D此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意故选:BD【点睛】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形三、填空题1、1【解析】【分析】利用因式分解法求出x1,x2,再根据根的关系即可求解【详解】解(x-3m)(x-m)=0x-3m=0或x

15、-m=0解得x1=3m,x2=m,3m-m=2解得m=1故答案为:1【考点】此题主要考查解一元二次方程,解题的关键是熟知因式分解法的运用2、 2 【解析】【分析】(1)根据顶点式将代入解析式即可求得最大值;(2)根据顶点式求得最大值,根据顶点的位置以及自变量的取值范围,分情况讨论求得最值,进而求得的范围【详解】(1)当m1时,二次函数y(x1)2121,则顶点为则函数有最大值,故答案为:(2)二次函数y(xm)2m21,且对称轴为,顶点坐标为当时,时,函数取得最大值即 线 封 密 内 号学级年名姓 线 封 密 外 解得,不符合题意,舍去当,时,函数取得最大值解得 当时,时,函数取得最大值解得综

16、上所述,【考点】本题考查了二次函数的性质,掌握的性质是解题的关键3、3【解析】【分析】把二次函数化为顶点式,进而即可求解【详解】解:,当x=1时,故答案是:3【考点】本题主要考查二次函数的图像和性质,掌握二次函数的顶点式,是解题的关键4、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:,且;综上所述,当时,方程有实数根,故答案为:【考点】 线 封 密 内 号学级年名姓 线 封 密 外

17、题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键5、【解析】【分析】根据关于原点对称的点的坐标特征:关于原点对称的点,横纵坐标都互为相反数,进行求解即可【详解】解:点A(m,5)与点B(4,n)关于原点成中心对称,m=4,n=-5,m+n=-5+4=-1,故答案为:-1【考点】本题主要考查了关于原点对称点的坐标特征,代数式求值,熟知关于原点对称的点的坐标特征是解题的关键四、解答题1、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】解:将x=2代入可得:6=6,故x=2是该一元二次方

18、程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【点睛】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.2、 (1) a=-1;坐标为,;(2).【解析】【分析】(1)利用抛物线的对称轴方程得到x=-=-1,解方程求出a即可得到抛物线的解析式为y=-x2-2x;然后解方程-x2-2x=0可得到抛物线与x轴的交点坐标;(2)抛物线y=-x2-2x+m由抛物线y=-x2-2x上下平移|m|和单位得到,利用函数图象可得到当x=1时,y0,即-1-2+m0;当x=-1时,y0,即-1+2+m0

19、,然后解两个不等式求出它们的公共部分可得到m的范围【详解】根据题意得,解得,所以抛物线的解析式为,当时,解得,所以抛物线与轴的交点坐标为,;抛物线抛物线由抛物线上下平移和单位得到,而抛物线的对称轴为直线,抛物线与轴的交点都在点,之间,当时,即,解得;当时,即,解得,的取值范围为 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程也考查了二次函数图象的几何变换3、(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大

20、利润是2000元【解析】【分析】(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意列出方程,解方程即可得出结论;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,根据题意列出函数解析式,根据二次函数的性质求出函数的最值【详解】解:(1)设甲种商品每箱盈利x元,则乙种商品每箱盈利(x-5)元,根据题意得: ,整理得:x2-18x+45=0,解得:x=15或x=3(舍去),经检验,x=15是原分式方程的解,符合实际,x-5=15-5=10(元),答:甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)设甲种商品降价a元,则每天可多卖出20a箱,利润为w元,由题意

21、得:w=(15-a)(100+20a)=-20a2+200a+1500=-20(a-5)2+2000,a=-20,当a=5时,函数有最大值,最大值是2000元,答:当降价5元时,该商场利润最大,最大利润是2000元【点睛】本题考查了分式方程及二次函数的应用,解题的关键是理解题意,找出等量关系,准确列出分式方程及函数关系式4、 (1)x12,x20(2)x1,x2【解析】【分析】(1)采用因式分解法即可求解;(2)直接用公式法即可求解(1)原方程左边因式分解,得:,即有:x12,x20;(2),【点睛】本题考查了用因式分解法和公式法解一元二次方程的知识,掌握求根公式是解答本题的关键5、 (1)该

22、果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱 线 封 密 内 号学级年名姓 线 封 密 外 (2)40【解析】【分析】(1)设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,根据等量关系是“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000,列方程,解方程即可;(2)根据等量关系是“忠橙”降价后售价降价后销量箱数+“爱媛”售价增加后销量箱数=总销售额比第一周的总销售额增加了,列方程,解方程即可(1)解:设该果园11月第一周销售“忠橙”箱,则销售“爱媛”箱,由题意得,解得,经检验是原方程的根,答:该果11月园第一周销售“忠橙”400箱,销售“爱媛”300箱(2)解:由题意得整理,得:,解得:,(不合题意,舍去),答:的值为40【点睛】本题考查列一元一次方程解销售问题应用题,列一元二次方程解应用题,掌握列一元一次方程,一元二次方程解应用题的方法与步骤,抓住等量关系“忠橙”售价销量箱数+“爱媛”售价销量箱数=50000列方程是解题关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1