1、八年级数学上册第十一章实数和二次根式专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、计算:()A4B5C6D82、下列说法中,正确的是()A无理数包括正无理数、零和负无理数B无限小数都是无理数C正
2、实数包括正有理数和正无理数D实数可以分为正实数和负实数两类3、若代数式在实数范围内有意义,则x的取值范围为()Ax0Bx0Cx0Dx0且x14、实数、在数轴上的位置如图所示,化简的结果是( )AB0CD5、下列各数中,比3大比4小的无理数是()A3.14BCD6、要使有意义,则x的取值范围为()Ax100Bx2Cx2Dx27、下列各组数中,互为相反数的一组是()A2与B2与C2与D|2|与28、化简的结果是()AB4CD29、若代数式+|b1|+c2+a在实数范围内有意义,则此代数式的最小值为()A0B5C4D510、下列实数中的无理数是()ABCD第卷(非选择题 70分)二、填空题(5小题,
3、每小题4分,共计20分)1、计算:_2、计算:=_3、(2)3的立方根为_4、如果定义一种新运算,规定 adbc,请化简: _5、的平方根是_三、解答题(5小题,每小题10分,共计50分)1、小东在学习了=后,认为=也成立,因此他认为一个化简过程: 是正确的你认为他的化简对吗?说说理由2、化简求值:(),其中a+13、计算:(1)(2) (3)(4)(5)(6)4、已知,求的值5、-参考答案-一、单选题1、C【解析】【分析】先根据二次根式的性质化简括号内的式子,再进行减法运算,最后进行除法运算即可【详解】原式故选C【考点】本题考查了二次根式的混合运算,利用二次根式的性质化简是解题的关键2、C【
4、解析】【分析】根据实数的概念即可判断【详解】解:(A)无理数包括正无理数和负无理数,故A错误;(B)无限循环小数是有理数,无限不循环小数是无理数,故B错误;(D)实数可分为正实数,零,负实数,故D错误;故选C【考点】本题考查实数的概念,解题关键是正确理解实数的概念,本题属于基础题型3、D【解析】【详解】解:根据分式有意义的条件和二次根式有意义的条件,可知x-10,x0,解得x0且x1.故选D.4、A【解析】【分析】根据实数a和b在数轴上的位置得出其取值范围,再利用二次根式的性质和绝对值的性质即可求出答案【详解】解:由数轴可知-2a-1,1b2,a+10,b-10,a-b0,=-2故选A.【考点
5、】此题主要考查了实数与数轴之间的对应关系,以及二次根式的性质,要求学生正确根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断5、C【解析】【分析】根据无理数的定义找出无理数,再估算无理数的范围即可求解【详解】解:四个选项中是无理数的只有和,而1742,3212424,34选项中比3大比4小的无理数只有故选:C【考点】此题主要考查了无理数的定义和估算,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数6、C【解析】【分析】根据二次根式有意义的条件可知,解不等式即可【详解】有意义,解得:故选C【考点】本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的
6、关键7、A【解析】【分析】根据相反数的概念、性质及根式的性质化简即可判定选择项【详解】解:A、2,2与2互为相反数,故选项正确,符合题意;B、2,2与2不互为相反数,故选项错误,不符合题意;C、2与不互为相反数,故选项错误,不符合题意;D、|2|2,2与2不互为相反数,故选项错误,不符合题意故选:A【考点】本题考查了算术平方根,立方根,相反数的概念,解题的关键是掌握相关概念并对数据进行化简8、D【解析】【分析】根据算术平方根的定义进行求解即可【详解】;故选D【考点】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键9、B【解析】【分析】利用二次根式、平方和绝对值的非负性,可知代数式的最
7、小值为,因为二次根式有意义,因此5,即可求解.【详解】代数式,|b1|c2a在实数范围内有意义,则a50,|b1|0,c20,所以代数式,|b1|c2a的最小值是,5,故选:B【考点】二次根式、绝对值、偶次方(平方考查最多)都具有非负性,二次根式有意义的条件是被开方数0.10、C【解析】【详解】分析: 分别根据无理数、有理数的定义即可判定选择项.详解: =1.1, =-2, 是有理数,是无理数,故选C.点睛:此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式.二、填空题1、【解析】【分析】根据实数的
8、性质即可化简求解【详解】解:故答案为:【考点】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算2、3【解析】【分析】先计算负整数指数幂和算术平方根,再计算加减即可求解【详解】原式523,故答案为:3【考点】此题考查了实数的运算,负整数指数幂,熟练掌握运算法则是解本题的关键3、-2【解析】【分析】根据立方根的定义,掌握运算法则即可求出【详解】解:(-2)3=-8,-8的立方根是-2,故答案为:-2【考点】本题考查了立方根的知识,掌握运算法则是关键4、3【解析】【分析】根据新运算的定义将原式转化成普通的运算,然后进行整式的混合运算即可【详解】根据题意得: (x1)(x+3)x(x+2)x2
9、+3xx3x22x3,故答案为:3【考点】本题主要考查了整式的混合运算,根据新运算的定义将新运算转化为普通的运算是解决此题的关键5、3【解析】【分析】根据算术平方根、平方根解决此题【详解】解:,实数的平方根是故答案为:【考点】本题主要考查算术平方根、平方根,熟练掌握算术平方根、平方根是解题的关键三、解答题1、错误;理由见解析.【解析】【分析】根据被开方数为非负数可得化简过程是错误的,然后进行二次根式的化简即可【详解】解:错误,原因是被开方数应该为非负数=2.故答案为错误.【考点】本题考查了二次根式的乘除法.2、,【解析】【分析】先通过分式的性质化简,在代入求值即可;【详解】解:原式,当a+1时
10、,原式,【考点】本题主要考查了分式化简求值,二次根式的运算,准确计算是解题的关键3、 (1);(2)2+;(3)1; ;(5)2;(6)11-4.【解析】【分析】(1)先将二次根式化简为最简二次根式,再进行二次根式加减计算,(2)先将括号里的二次根式进行化简,再进行加减计算,最后再计算二次根式除法,(3)将二次根式的被开方数化为假分数,然后根据二次根式的乘除法法则进行计算,(4)先将二次根式进行化简,再根据二次根式的乘除法法则进行计算,(5)根据平方差公式进行二次根式的计算,(6)根据完全平方公式对二次根式进行计算.【详解】(1) ,=,=,(2) ,=,=,=2+,(3),=,=,=1,(4
11、),=,=,=,(5),= ,=3-1,=2,(6),=,=11.【考点】本题主要考查二次根式的加减乘除运算,解决本题的关键是要熟练掌握二次根式加减乘除计算法则.4、2022【解析】【分析】根据算术平方根的非负性确定的范围,进而化简绝对值,在根据平方根的定义求得代数式的值【详解】解:,原式化简为,故【考点】本题考查了算术平方根的非负性,化简绝对值,平方根的定义,根据算术平方根的非负性确定的范围化简绝对值是解题的关键5、6【解析】【分析】根据二次根式的乘方运算、绝对值的性质、零指数幂、负整数指数幂化简,再根据实数的混合运算法则计算即可【详解】解:【考点】本题考查了含二次根式的乘方,绝对值,零指数幂,负整数指数幂的实数混合运算;掌握好相关的基础知识是关键