收藏 分享(赏)

2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx

上传人:a**** 文档编号:637227 上传时间:2025-12-12 格式:DOCX 页数:17 大小:263.49KB
下载 相关 举报
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第1页
第1页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第2页
第2页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第3页
第3页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第4页
第4页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第5页
第5页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第6页
第6页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第7页
第7页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第8页
第8页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第9页
第9页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第10页
第10页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第11页
第11页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第12页
第12页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第13页
第13页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第14页
第14页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第15页
第15页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第16页
第16页 / 共17页
2022-2023学年北师大版七年级数学上册第五章一元一次方程章节测评练习题.docx_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
资源描述

1、七年级数学上册第五章一元一次方程章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为(),则(

2、)ABCD2、下列说法中,正确的个数有()若mx=my,则mx-my=0若mx=my,则x=y若mx=my,则mx+my=2my若x=y,则mx=myA2个B3个C4个D1个3、我国古代数学著作增删算法统宗记载“绳索量牵”问题;“一条竿子一条索,索比竿子长一托折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托设绳索长x托,则符合题意的方程是()A2x(x-1)-1B2x(x+1)+1Cx(x+1)+1Dx(x-1)-14、下列解方程的变形过程正确的是()A由移项得:B由移项得:C由去分母得:D由去括号得:5、某

3、种商品因换季准备打折出售,若按定价的七五折出售将赔25元,若按定价的九折出售将赚20元,则这种商品的定价为()A280元B300元C320元D200元6、已知关于x的方程的解满足方程,则m的值是()AB2CD37、某市出租车收费标准是:起步价8元(即行驶距离不超过,付8元车费),超过,每增加收1.6元(不足按计),小梅从家到图书馆的路程为,出租车车费为24元,那么的值可能是()A10B13C16D188、方程的解是()A方程有唯一解B方程有唯一解C当方程有唯一解D当时方程有无数多个解9、如果方程是关于x的一元一次方程,则n的值为()A2B4C3D110、如图是一个正方体的展开图,标注了字母A的

4、面是正方体的正面,如果正方体上面和下面所标数字相等,则x的值是()AB0C2D1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若与互为相反数,则x的值为_2、如果方程是关于的一元一次方程,那么的值是_3、已知,用含x的代数式表示y:_,用含y的代数式表示x:_4、某兴趣小组中女生人数占全组人数的一半,如果再增加名女生,那么女生人数占全组人数的,则这个兴趣小组原来的人数是_人5、小红在解关于的一元一次方程时,误将看作,得方程的解为,则原方程的解为_三、解答题(5小题,每小题10分,共计50分)1、姐、弟二人录入一批稿件,姐姐单独录入需要的时间是弟弟的,姐姐先录入了这批稿

5、件的,接着由弟弟单独录入,共用24小时录入完问:姐姐录入用了多少小时?2、一位商人来到一座新城市,想租一套房子,A家房东的条件是先交2000元,每月租金1200元;B家房东的条件是每月租金1400元(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?3、在数轴上,点A表示2,点B表示6(1)点A与B的距离为_;(2)点C表示的数为c,设,若,则c的值为_;(3)点P从原点O出发,沿数轴负方向以速度向终点A运动,同时,点Q从点B出发沿数轴负方向以速度向终点O运动,运动时间为t点P表示的数为_,点Q表

6、示的数为_(用含、t的代数式表示);点N为O、Q之间的动点,在P、Q运动过程中,NP始终为定值,设,若,探究、满足的等量关系4、学校安排某班部分男生将新购进的电脑桌椅搬入微机室,若每人搬4套,则还缺8套;若每人搬3套,则还剩4套问学校安排了多少男生搬运电脑桌椅?5、一件商品的原价是6000元,打八折后还获利20%,求打折后的售价及进价-参考答案-一、单选题1、D【解析】【分析】根据题意可直接列出方程进行排除选项即可【详解】解:由题意得:;故选D【考点】本题主要考查一元一次方程的应用,熟练掌握一元一次方程的应用是解题的关键2、B【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案【详解】

7、解:根据等式性质1,mx=my两边都减my,即可得到mx-my=0;根据等式性质2,需加条件m0;根据等式性质1,mx=my两边都加my,即可得到mx+my=2my;根据等式性质2,x=y两边都乘以m,即可得到mx=my;综上所述,正确;故选B【考点】主要考查了等式的基本性质等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式3、D【解析】【分析】设绳索长x托,则竿长(x1)托,根据“用绳索去量竿,绳索比竿长1托;如果将绳索对半折后再去量竿,就比竿短1托”,即可得出关于x的一元一次方程,此题得解

8、【详解】解:设绳索长x托,则竿长(x-1)托,依题意,得:故选:D【考点】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键4、D【解析】【分析】对于本题,我们可以根据解方程式的变形过程逐项去检查,必须符合变形规则,移项要变号【详解】解析:A由移项得:,故A错误;B由移项得:,故B错误;C.由去分母得:,故C错误;D.由去括号得: 故D正确故选:D【考点】本题主要考查了解一元一次方程变形化简求值,解题关键是:必须熟练运用移项法则5、B【解析】【分析】设这种商品的定价为x元,根据题意可直接列方程求解【详解】设这种商品的定价为x元,由题意,得0.75

9、x+250.9x20,解得:x300故选:B【考点】本题主要考查一元一次方程的实际应用,熟练掌握一元一次方程的应用是解题的关键6、B【解析】【分析】先求出方程的解;再把求出的解代入方程,求关于m的一元一次方程即可【详解】解:,解得:,将代入方程得:,解得:,故选:B【考点】此题考查了方程的解,解题的关键是熟练掌握方程的解即为能使方程左右两边相等的未知数的值7、B【解析】【分析】根据等量关系(经过的路程-3)1.6+起步价=24,列式即可;【详解】解:由题意得,解得,故选:【考点】本题主要考查了一元一次方程的应用,准确列方程计算是解题的关键8、B【解析】【分析】根据解一元一次方程的步骤,把未知数

10、的系数化为1,即可得出答案【详解】解:方程有唯一解;故选:B【考点】本题考查了解一元一次方程,熟练掌握解方程的步骤是解题的关键9、B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a0)根据未知数的指数为1可求出n的值【详解】解:由方程是关于x的一元一次方程可知x的次数是1,故,所以故选:B【考点】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件这是这类题目考查的重点10、C【解析】【分析】利用正方体及其表面展开图的特点,列出方程5x+2=-8解题

11、【详解】解:根据题意得,5x+2=-8,解得:x=-2,故选C【考点】本题考查了正方体相对两个面上的数字,注意正方体的空间图形,从相对面入手,分析及解答问题二、填空题1、-3【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值【详解】解:根据题意得:5x+2-2x+7=0,移项合并得:3x=-9,解得:x=-3,故答案为:-3【考点】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键2、【解析】【分析】由一元一次方程的定义,可得,求解即可【详解】解:由题意可得:,解得:,所以故答案为:【考点】此题考查了一元一次方程的定义(一元一次方程是指只含有一个未知数并且未

12、知数的次数为1的整式方程),解题的关键是掌握一元一次方程的定义3、 【解析】【分析】先把x当常数,求解函数值,再把当常数,求解自变量 从而可得答案.【详解】解: , , 故答案为:,【考点】本题考查的是函数自变量与因变量之间的关系,掌握用含有一个变量的代数式表示另外一个变量是解题的关键.4、16【解析】【分析】设这个兴趣小组原来的人数是x,则女生人数为x,然后根据再增加4名女生,那么女生人数就占全组人数的列方程,再解方程即可【详解】解:设这个兴趣小组原来的人数是x,根据题意得x+4=(x+4),解得x=16(人)答:这个兴趣小组原来的人数是16人故答案为:16【考点】本题考查了一元一次方程的应

13、用,解题的关键是设出未知数,根据等量关系列出方程5、【解析】【分析】先根据“错误方程”的解求出a的值,从而可得原方程,再解一元一次方程即可【详解】解:由题意得:是方程的解则,解得,因此,原方程为解得故答案为:【考点】本题考查了解一元一次方程,理解题意,求出原方程中a的值是解题关键三、解答题1、小时【解析】【分析】设弟弟单独打印需要的时间为x小时,姐姐单独打印需要的时间是弟弟所需时间的,那么姐姐单独打印需要的时间就是小时,姐姐先打印了这批稿件的,那么需要的时间就是的,同理可得弟弟打完剩下的部分需要(1-)小时,根据姐姐和弟弟一共用了24小时列出方程求解即可【详解】解:设弟弟单独打印需要的时间设为

14、x小时,那么姐姐单独打印需要的时间就是小时;(小时)答:姐姐录入用了小时【考点】本题列方程解应用题,表示出姐姐和弟弟单独打印需要的工作时间,进而表示出各打印了多长时间,再找出等量关系列出方程求解,然后进一步求解2、(1)住半年时,租B家的房子划算;(2)住一年时,租A家的房子划算;(3)这位商人住10个月时,租两家的房子租金一样【解析】【分析】(1)分别根据A、B两家租金的缴费方式计算A、B两家半年的租金,然后比较即得答案;(2)分别根据A、B两家租金的缴费方式计算A、B两家一年的租金,然后比较即得答案;(3)根据A家租金(2000+1200租的月数)=B家租金(1400租的月数)设未知数列方

15、程解答即可【详解】解:(1)如果住半年,交给A家的租金是(元),交给B家的租金是(元),因为92008400,所以住半年时,租B家的房子划算(2)如果住一年,交给A家的租金是(元),交给B家的租金是(元),因为1640016800,所以住一年时,租A家的房子划算(3)设这位商人住x个月时,租两家的房子租金一样,根据题意,得解方程,得答:这位商人住10个月时,租两家的房子租金一样【考点】本题考查了一元一次方程的应用,属于常考题型,正确理解题意、明确A、B两家租金的缴费方式是解题的关键3、(1)8;(2)4或10;(3),;【解析】【分析】(1)将B点表示的数减去A点表示的数即可求得的距离;(2)

16、分C点在线段的延长线上,线段上,线段的延长线上三种情况分析,根据,则点C不可能在线段的延长线上,根据另两种情况分析列出一元一次方程解方程求解即可;(3)根据速度乘以时间得到路程,根据运动方向即可求得P,Q点表示数;先求得,根据求得,即可求得点表示的数,进而求得的长度,根据NP始终为定值,即可求得、满足的等量关系【详解】(1)点A表示2,点B表示6的距离为:故答案为:8(2)点C表示的数为c,设,若,点C在线段上时,则,则解得点C在线段的延长线上,则,则解得故答案为:4或10(3)点P从原点O出发,沿数轴负方向以速度向终点A运动,同时,点Q从点B出发沿数轴负方向以速度向终点O运动,运动时间为t则

17、点P表示的数为,点Q表示的数为故答案为:, 由题意得,点A表示2,点B表示6, Q表示的数为表示的数为 始终为定值与时间t无关【考点】本题考查了数轴上动点问题,数轴上两点距离,一元一次方程的应用,整式加减中无关类型,数形结合是解题的关键4、12名【解析】【分析】设安排x名男生搬运,两种搬运情况搬运总数相同作为等量关系列方程即可.【详解】设安排x名男生搬运,则4x-8=3x+4, x=12 ,答:安排12名男生【考点】本题考查一元一次方程的应用,找准等量关系是解题的关键.5、售价为4800元,进价为4000元【解析】【分析】根据售价=标价折扣率,即可求出该商品的售价,设该件商品的进价x元,根据售价=本金(1+盈利率),即可得出关于x的一元一次方程,解之即可得出结论【详解】解:(元)设:成本为元答:售价为4800元,成本为4000元【考点】本题考查了一元一次方程的应用,根据售价=本金(1+盈利率),列出关于x的一元一次方程是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1