1、人教版九年级数学上册第二十四章圆定向训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD2、有一个圆的半径为5,则
2、该圆的弦长不可能是()A1B4C10D113、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD4、已知O的半径等于3,圆心O到点P的距离为5,那么点P与O的位置关系是()A点P在O内B点P在O外C点P在O上D无法确定5、如图,在ABC中,cosB,sinC,AC5,则ABC的面积是( )A B12C14D216、如图,O的直径垂直于弦,垂足为若,则的长是()ABCD7、如图,正五边形内接于,为上的一点(点不与点重合),则的度数为()ABCD8、如图所示,MN为O的弦,N=52,则MON的度数为()A38B52C76D1049、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与A
3、G交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等10、如图,是的直径,弦于点,则的长为()A4B5C8D16第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,矩形ABCD的对角线AC,BD交于点O,分别以点A,C为圆心,AO长为半径画弧,分别交AB,CD于点E,F若BD4,CAB36,则图中阴影部分的面积为_(结果保留)2、如图所示的网格由边长为个单位长度的小正方形组成,点、在直角坐标系中的坐标分别为,则内心的坐标为_3、若O的半径为6cm,则O中最长的弦为_厘米4、如图,已知是的直径,且,弦,点是弧上的点,连接、,
4、若,则的长为_5、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.三、解答题(5小题,每小题10分,共计50分)1、如图,点C是射线上的动点,四边形是矩形,对角线交于点O,的平分线交边于点P,交射线于点F,点E在线段上(不与点P重合),连接,若(1)证明:(2)点Q在线段上,连接、,当时,是否存在的情形?请说明理由2、如图,PA、PB分别切O于A、B,连接PO与O相交于C,连接AC、BC,求证:AC=BC 3、已知四边形内接于O,垂足为E,垂足为F,交于点G,连接(1)求证:;(2)如图1,若,求O的半径;(3)如图2,连接,交于点H,若
5、,试判断是否为定值,若是,求出该定值;若不是,说明理由4、如图,AB是O的直径,弦CDAB,垂足为E,如果AB10,CD8,求线段AE的长5、如图,一根长的绳子,一端拴在柱子上,另一端拴着一只羊(羊只能在草地上活动),请画出羊的活动区域-参考答案-一、单选题1、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的
6、知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决2、D【解析】【分析】根据圆的半径为5,可得到圆的最大弦长为10,即可求解【详解】半径为5,直径为10,最长弦长为10,则不可能是11故选:D【考点】本题主要考查了圆的基本性质,理解圆的直径是圆的最长的弦是解题的关键3、B【解析】【分析】扇形面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键4、B【解析】【分析】根据d,r法则逐一判断即可【详解】解:r=3,d=5,dr,点P在O外故选:B【考点】本题考
7、查了点与圆的位置关系,熟练掌握,法则是解题的关键5、A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积【详解】解:过点A作ADBC,ABC中,cosB=,sinC=,AC=5,cosB=,B=45,sinC=,AD=3,CD=4,BD=3,则ABC的面积是:ADBC=3(3+4)=故选A【考点】此题主要考查了解直角三角形的知识,作出ADBC,进而得出相关线段的长度是解决问题的关键6、C【解析】【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD【详解】解:O的直径垂直于弦, ,CE=1CD=2故选:C【考点】本题考查了直角三角形
8、的性质,垂径定理等知识点,能求出CE=DE是解此题的关键7、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72,即COD=72,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.8、C【解析】【分析】根据半径相等得到OM=ON,则M=N=52,然后根据三角形内角和定理计算MON的度数【详解】OM=ON,M=N=52,MON=180-252=76故选C【考点】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)9
9、、C【解析】【分析】根据作法可得CD平分ACB,结合题意即可求解【详解】解:由作法得CD平分ACB,AG平分CAB,E点为ABC的内心故答案为:C【考点】此题考查了尺规作图(角平分线),以及三角形角平分线的性质,熟练掌握相关基本性质是解题的关键10、C【解析】【分析】根据垂径定理得出CM=DM,再由已知条件得出圆的半径为5,在RtOCM中,由勾股定理得出CM即可,从而得出CD【详解】解:AB是O的直径,弦CDAB,CM=DM,AM=2,BM=8,AB=10,OA=OC=5,在RtOCM中,OM2+CM2=OC2,CM=4,CD=8故选:C【考点】本题考查了垂径定理,圆周角定理以及勾股定理,掌握
10、定理的内容并熟练地运用是解题的关键二、填空题1、【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可【详解】解:矩形ABCD的对角线AC,BD交于点O,且BD=4,AC=BD4,OA=OC=OB=OD=2,故答案为:【考点】本题考查了矩形的性质,扇形的面积等知识,正确的识别图形是解题的关键2、(2,3)【解析】【分析】根据A、B、C三点的坐标建立如图所示的坐标系,计算出ABC各边的长度,易得该三角形是直角三角形,设BC的关系式为:y=kx+b,求出BC与x轴的交点G的坐标,证出点A与点G关于BD对称,射线BD是ABC的平分线,三角形的内心在BD上,设点M为
11、三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作MEAB,过点M作MFAC,且ME=MF=r,求出r的值,在BEM中,利用勾股定理求出BM的值,即可得到点M的坐标【详解】解:根据A、B、C三点的坐标建立如图所示的坐标系,根据题意可得:AB=,AC=,BC=,BAC=90,设BC的关系式为:y=kx+b,代入B,C,可得,解得:,BC:,当y=0时,x=3,即G(3,0),点A与点G关于BD对称,射线BD是ABC的平分线,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作MEAB,过点M作MFAC,且ME=MF=r,BAC=90,四边形MEAF为正方形,SABC=,解得
12、:,即AE=EM=,BE=,BM=,B(-3,3),M(2,3),故答案为:(2,3)【考点】本题考查三角形内心、平面直角坐标系、一次函数的解析式、勾股定理和正方形的判定与性质等相关知识点,把握内心是三角形内接圆的圆心这个概念,灵活运用各种知识求解即可3、12【解析】【详解】解:O的半径为6cm,O的直径为12cm,即圆中最长的弦长为12cm故答案为124、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出COB=60,再在COH中求出CH,最后由垂径定理求出CD【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,A=EOB,D=COE,A+D
13、=30,EOB+COE=COB=30,COB=60,CDAB,COH为30,60,90的三角形,其三边之比为,CH=,CD=2CH=9,故答案为:9【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键是求出COB=605、【解析】【分析】连接CE,如图,利用平行线的性质得COEEOB90,再利用勾股定理计算出OE,利用余弦的定义得到OCE60,然后根据扇形面积公式,利用S阴影部分S扇形BCESOCES扇形BOD进行计算即可【详解】解:连接CE,如图,ACBC,ACB90,ACOE,COEEOB90,OC1,CE2,OE,cosOCE,OCE60,S阴影部分S扇形BCESOCES扇形B
14、OD,故答案为【考点】本题考查了扇形面积的计算:求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积三、解答题1、 (1)见解析(2)不存在的情形,理由见解析【解析】【分析】(1)根据矩形的性质可得DAF=CFA,从而得到CAF=CFA,进而AC=CF,再由OB=OC,可得OBC=OCB,然后根据,可得ACF=2ECF,即可求证;(2)先假设DQ=PC,可先证得点A、C、E、D四点共圆,从而得到DAE=DCE,CAE=CDE,再由AF平分CAD,可得DE=CE,进而得到点E在CD的垂直平分线上,再由,可得AQC=CPQ,从而得到CP=CQ,CQ=DQ,进而得到点Q在CD的垂直平分线上,得
15、到AFBC,AF交射线于点F相矛盾,即可求解(1)证明:在矩形ABCD中,ADBC,OB=OC,DAF=CFA,AF平分CAD,DAF=CAF,CAF=CFA,AC=CF,OB=OC,OBC=OCB,2ECF+OCB=180,OCB+ACF=180,ACF=2ECF,ACE=FCE,AE=EF;(2)解:不存在PC=DQ,理由如下:假设DQ=PC,四边形ABCD是矩形,ADC=90,由(1)得:AC=CF,AE=EF,CEAF,即AEC=90,AEC=ADC=90,点A、C、E、D四点共圆,DAE=DCE,CAE=CDE,AF平分CAD,CAE=DAE=DCE=EDC,DE=CE,点E在CD的
16、垂直平分线上,CPQ=EDC+DEA,AQC=CPQ,CP=CQ,CP=DQ,CQ=DQ,点Q在CD的垂直平分线上,EQCD,即AFCD,BCCD,AFBC,AF交射线于点F相矛盾,假设不成立,原结论成立,即当时,不存在的情形【考点】本题主要考查了矩形的性质,等腰三角形的判定和性质,四点共圆问题,反证法,线段垂直平分线的判定,熟练掌握相关知识点,利用四点共圆解决问题是解题的关键2、证明见解析【解析】【详解】分析:连接OA、OB,根据切线的性质得出OAP和OBP全等,从而得出APC=BPC,从而得出APC和BPC全等,从而得出答案详解:连结OA,OB. PA,PB分别切O于点A,B,PAPB,又
17、OAOB,POPO, OAPOBP(SSS),APCBPC,又PCPC,APCBPC(SAS)ACBC. 点睛:本题主要考查的是切线的性质以及三角形全等的证明与性质,属于基础题型根据切线的性质得出PA=PB是解题的关键3、 (1)证明见详解(2)(3)为定值,【解析】【分析】(1)由,可证明,由圆周角定理可知,可证明,再借助对顶角相等可知,进而证明,即可推导出;(2)由(1)可知,AC为DG的垂直平分线,即有,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,利用垂径定理和圆周角定理推导, ,;再借助,可证明,进而得到,即可证明,即有;在中,利用勾股定理计算OC的长,即可得到O的半径;(
18、3)过点H作,垂足分别为P、Q,过点D作于点K,由已知条件、三角函数函数及含30角的直角三角形的性质,先计算出,再根据,可得出,整理可得(1)证明:,;(2)解:由(1)可知,即AC为DG的垂直平分线,如图1,连接OA、OB、OC、OD,过点O作,垂足分别为M、N,则有,同理,即,在和中, ,在中,即圆O的半径为;(3)为定值,且,证明如下:如图2,过点H作,垂足分别为P、Q,过点D作于点K,即,且,在中,即有,即 ,【考点】本题主要考查了圆周角定理、垂径定理、等腰三角形的判定与性质、全等三角形的判定与性质、角平分线的性质及利用三角函数解直角三角形等知识,综合性较强,解题关键是熟练掌握相关知识
19、并能够综合运用4、2【解析】【分析】连接OC,利用直径AB=10,则OC=OA=5,再由CDAB,根据垂径定理得CE=DE=CD=4,然后利用勾股定理计算出OE,再利用AE=OA-OE进行计算即可【详解】连接OC,如图,AB是O的直径,AB10,OCOA5,CDAB,CEDECD84,在RtOCE中,OC5,CE4,OE3,AEOAOE532【考点】本题考查了垂径定理,掌握垂径定理及勾股定理是关键5、见解析【解析】【分析】根据题意画出两个扇形即可得到羊的活动区域【详解】解:如图,以点O为圆心,5m长的绳子为半径画弧交草地左边界于点A,交OD的延长线于点B,再以D为圆心,DB长为半径画弧交草地的右边界于点C,则扇形AOB和扇形BDC部分即为羊的活动区域【考点】本题考查了作图应用与设计作图、扇形面积,根据题意画扇形是解决本题的关键