1、高考资源网() 您身边的高考专家1对变量x,y进行回归分析时,依据得到的4个不同的回归模型作出残差图,则模型拟合精度最高的是()解析:选A.用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,带状区域的宽度越窄,说明模型拟合精度越高,由此可知A选项对应的模型拟合精度最高故选A.2若一函数模型为yax2bxc(a0),为将y转化为t的线性回归方程,需要进行变换,即令t()Ax2B(xa)2C. Daxb解析:选C.由题意,知ya.令t,则yat,满足题意,故选C.3如图,5个(x,y)数据,去掉D(3,10)后,下列说法错误的是()A相关系数r变大B残差平方
2、和变大CR2变大D解释变量x与预报变量y的相关性变强解析:选B.由散点图,知去掉D后,x与y的相关性变强,且为正相关,所以r变大,R2变大,残差平方和变小4某化妆品公司为了增加其商品的销售利润,调查了该商品投入的广告费用x与销售利润y的统计数据如下表:广告费用x(万元)2356销售利润y(万元)57911由表中数据,得线性回归方程l:x(,),则下列结论正确的是()A.0B.0C直线l过点(4,8)D直线l过点(2,5)解析:选C.因为1.40,81.442.40,所以排除A、B;因为1.4x2.4,所以1.422.45.25,所以点(2,5)不在直线l上,所以排除D;因为4,8,所以回归直线
3、l过样本点的中心(4,8),故选C.5为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)根据收集到的数据可知x1x2x3x4x5150,由最小二乘法求得回归直线方程为0.67x54.9,则y1y2y3y4y5的值为_解析:由题意,得(x1x2x3x4x5)30,且回归直线0.67x54.9 恒过点(,),则0.673054.975,所以y1y2y3y4y55375.答案:3756为了研究司机血液中含有酒精与对事故负有责任是否有关系,从遭遇汽车碰撞事故的司机中随机调查了2 000名司机,得
4、到如下列联表:有责任无责任总计血液中含有酒精650150800血液中无酒精7005001 200总计1 3506502 000画出列联表对应的等高条形图,并通过图形分析司机血液中含有酒精与对事故负有责任是否有关系能否在犯错误的概率不超过0.001的前提下认为二者有关系?解:相应的等高条形图如图所示:图中两个深色条的高分别表示司机血液中含有酒精和无酒精的两个样本中对事故负有责任的频率从图中可以看出,司机血液中含有酒精的样本中对事故负有责任的频率明显高于司机血液中无酒精的样本中对事故负有责任的频率由此可以认为司机血液中含有酒精与对事故负有责任有关系由列联表中的数据,得K2的观测值k114.91010.828.因此,在犯错误的概率不超过0.001的前提下,认为司机血液中含有酒精与对事故负有责任有关系- 3 - 版权所有高考资源网