1、4三角函数(2)1记,那么 2已知tan ,sin(),其中,(0,),则sin 的值为 3若锐角的面积为 ,且 ,则 等于_74如图,某港口一天6时到18时的水深变化曲线近似满足函数,据此函数可知,这段时间水深(单位:m)的最大值为 85若tan+ 4,则sin2 6给出命题:函数y2sin(x)cos(x)(xR)的最小值等于1;函数ysin xcos x是最小正周期为2的奇函数;函数ysin(x)在区间0,上单调递增的;若sin 20,cos sin 0,A,B均是锐角,即其正切值均为正)tan Ctan(AB),所求最大值为.12已知函数f(x)的图像是由函数的图像经如下变换得到:先将
2、图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.()求函数f(x)的解析式,并求其图像的对称轴方程;()已知关于的方程在0,2)内有两个不同的解 (1)求实数m的取值范围; (2)证明:【答案】() ,;()(1);(2)详见解析【解析】试题分析:()纵向伸缩或平移: 或;横向伸缩或平移:(纵坐标不变,横坐标变为原来的倍),(时,向左平移个单位;时,向右平移个单位);() (1)由()得,则,利用辅助角公式变形为(其中),方程在内有两个不同的解,等价于直线和函数有两个不同交点,数形结合求实数m的取值范围;(2)结合图像可得和,进而利用诱导公式结合已知条件
3、求解试题解析:解法一:(1)将的图像上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到的图像,再将的图像向右平移个单位长度后得到的图像,故,从而函数图像的对称轴方程为(2)1) (其中)依题意,在区间内有两个不同的解当且仅当,故m的取值范围是.2)因为是方程在区间内有两个不同的解,所以,.当时,当时, 所以解法二:(1)同解法一.(2)1) 同解法一.2) 因为是方程在区间内有两个不同的解,所以,.当时,当时, 所以于是13某展览园指挥中心所用地块的形状是大小一定的矩形ABCD,BC=a,CD=ba,b为常数且满足ba组委会决定从该矩形地块中划出一个直角三角形地块AEF建游客休息区(点E,F分
4、别在线段AB,AD上),且该直角三角形AEF的周长为l(l2b),如图设AE=x,AEF的面积为S(1)求S关于x的函数关系式;(2)试确定点E的位置,使得直角三角形地块AEF的面积S最大,并求出S的最大值分析:(1)根据题意,分析可得,欲求,AEF场地占地面积,只须求出图中直角三角形的周长求出另一边长AF,再结合直角三角形的面积计算公式求出它们的面积即得;(2)对于(1)所列不等式,可利用导数研究它的单调性求它的最大值,从而解决问题解答:解:(1)设AF=y,则,整理,得(3分),x(0,b (4分)(2)当时,S0,S在(0,b递增,故当x=b时,;当时,在上,S0,S递增,在上,S0,S递减,故当时,