考点3 等差数列前n项和及性质的应用(2018天津卷(文)设an是等差数列,其前n项和为Sn(nN*);bn是等比数列,公比大于0,其前n项和为Tn(nN*),已知b11,b3b22,b4a3a5,b5a42a6.(1)求Sn和Tn;(2)若Sn(T1T2Tn)an4bn,求正整数n的值【解析】(1)设等比数列bn的公比为q(q0)由b11,b3b22,可得q2q20.因为q0,可得q2,故bn2n1.所以Tn1-2n1-22n1(nN*)设等差数列an的公差为D由b4a3a5,可得a13d4.由b5a42a6,可得3a113d16,从而a11,d1,故ann,所以Snn(n+1)2(nN*)(2)由(1),有T1T2Tn(21222n)n2(1-2n)1-2n2n1n2.由Sn(T1T2Tn)an4bn,可得n(n+1)22n1n2n2n1,整理得n23n40,解得n1(舍去)或n4.所以n的值为4.【答案】见解析(2018全国卷(文)记Sn为等差数列an的前n项和,已知a17,S315.(1)求an的通项公式;(2)求Sn,并求Sn的最小值【解析】(1)设an的公差为d,由题意得3a13d15.由a17得d2.所以an的通项公式为ana1(n1)d2n9.(2)由(1)得Sna1+an2nn28n(n4)216.所以当n4时,Sn取得最小值16.【答案】见解析