1、6.4 超重与失重班级_姓名_学号_学习目标: 1. 知道什么是超重与失重。2. 知道产生超重与失重的条件。3. 了解生活实际中超重和失重现象。4理解超重和失重的实质。5. 了解超重与失重在现代科学技术研究中的重要应用。6会用牛顿第二定律求解超重和失重问题。学习重点: 超重和失重的实质。学习难点: 应用牛顿定律求解超重和失重问题。主要内容:一、超重和失重现象 1超重现象(1) 定义(力学特征):物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的情况叫超重现象。(2) 产生原因(运动学特征):物体具有竖直向上的加速度。(3) 发生超重现象与物体的运动(速度)方向无关,只要加速度方向竖直向上
2、物体加速向上运动或减速向下运动都会发生超重现象。 2失重现象(1) 定义(力学特征):物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的情况叫失重现象。(2) 产生原因(运动学特征):物体具有竖直向下的加速度。(3) 发生超重现象与物体的运动(速度)方向无关,只要加速度方向竖直向下物体加速向下运动或减速向上运动都会发生失重现象。3完全失重现象失重的特殊情况(1) 定义:物体对支持物的压力(或对悬挂物的拉力)等于零的情况(即与支持物或悬挂物虽然接触但无相互作用)。(2) 产生原因:物体竖直向下的加速度就是重力加速度,即只受重力作用,不会再与支持物或悬挂物发生作用。(3) 是否发生完全失重现
3、象与运动(速度)方向无关,只要物体竖直向下的加速度等于重力加速度即可。问题:试在右图中分别讨论当GAGB和GAGB时弹簧称的示数与GA的关系。超重和失重现象的运动学特征V的方向V的方向a的方向视重F与G的大小关系现象FGFGa=gF=0二、注意1 超重和失重的实质:物体超重和失重并不是物体的实际重力变大或变小,物体所受重力G=mg始终存在,且大小方向不随运动状态变化。只是因为由于物体在竖直方向有加速度,从而使物体的视重变大变小。2 物体由于处于地球上不同地理位置而使重力G值略有不同的现象不属于超重和失重现象。3 判断超重和失重现象的关键,是分析物体的加速度。要灵活运用整体法和隔离法,根据牛顿运
4、动定律解决超重、失重的实际问题。问题:1、手提弹簧秤突然上升一段距离的过程中,有无超重和失重现象 2人突然站立、下蹲的过程中有无、失重现象? 3已调平衡的天平,在竖直方向变速运动的电梯中平衡会否被破坏? 4容器中装有水,在水中有一只木球,用一根橡皮筋将木球系在容器底部。在失重的条件下,木球将要上浮一些还是要下沉一些? 5两个木块叠放在一起,竖直向上抛出以后的飞行过程中, 若不计空气阻力,它们之间是否存在相互作用的弹力?为什么? 6在超重、失重和完全失重的情况下,天平、杆秤、弹簧秤、水银气压计、水银温度计能否正常工作? 7完全失重时,能否用弹簧秤测量力的大小?同步训练: l.木箱中有一个lOKg
5、的物体,钢绳吊着木箱向上作初速度为零的匀加速直线运动,加速度是05g,至第3s末,钢绳突然断裂,那么,45s末物体对木箱的压力是( ) A.100N B0 C150N D5N 2.电梯内弹簧秤上挂有一个质量为5kg的物体,电梯在运动时,弹簧秤的示数为392N,若弹簧秤示数突然变为588N,则可以肯定的是( ) A电梯速率突然增加 B电梯速率突然减小 C电梯突然改变运动方向 D电梯加速度突然增加 E电梯加速度突然减少 F电梯突然改变加速度方向 3一个质量为50kg的人,站在竖直向上运动着的升降机地板上。他看到升降机内挂着重物的弹簧秤的示数为40N。已知弹簧秤下挂着的物体的重力为50N,取g=lO
6、ms2,则人对地板的压力为( ) A大于500N B小于500N C等于500N D上述说法均不对4一个小杯子的侧壁有一小孔,杯内盛水后,水会从小孔射出。现使杯自由下落,则杯中的水( )A 会比静止时射得更远些 B会比静止时射得更近些C与静止时射得一样远 D不会射出 5原来作匀速运动的升降机内,有一被伸长弹簧拉住的、具有一定质量的物体A静止在地板上,如图所示。现发现物体A突然被弹簧拉向右方。由此可判断,此时升降机的运动可能是( ) A加速上升 B减速上升 C加速下降 D减速下降答案:1.B 2.A 3.B 4.D 5.BC 阅读材料:人体生理的微重效应人体在漫长的进化过程中,已经适应了周围的物
7、理环境,例如地球表面的温度、电磁场、重力场等。地球表面的重力场强度大约在98ms2左右,作用于所有物体上,使它们受到指向地心的作用力。人体中的每一器官、组织,细胞以及生物分子都是在这样的重力场中得以演化并赖以生存的。一旦失去了正常的重力场,生物体的器官和组织就将失去平衡,导致一系列的生理变化,甚至危及生命。超重和失重就是两种偏离正常重力场的典型状态。所谓微重力环境就是重力强度大大减少,十分微弱,其大小大约只有地球表面重力场强度的百万分之一。宇航员乘坐宇宙飞船在太空中飞行就是在这样的微重环境下生活和工作的。在太空中,宇航员可以毫不费力地漂浮在飞船中,他们用自己的内力去建立运动。在微重的空间里,方向性已经无意义了,因为只有在地球上由于重力才有“上” “下”的方向概念。在地面上的人们是靠内耳的敏感器官传递信息给大脑,以保持身体的平衡。在太空的微重状态下,与重力有关的振动发生了变化,把神经系统搞乱了,结果内耳的传感系统向大脑传递了模糊不清的信息,身体难以平衡。这种感觉在地球上也能体会到。例如,在海上旅行时,船体在波涛中起伏摇晃,不适应者感到头昏目眩。这就是身体失去平衡产生的感觉,有时称作“运动病”。为了使宇航员适应微重状态,可让他们在实验室内作训练。宇航员们坐在旋转的椅子上或者旋转的机舱内,以不同的速度旋转,宇航员们就可感受到不同的重力条件,以体验他们将要去的太空和星球的重力环境。