收藏 分享(赏)

天津市南开中学高二数学必修5导学案:1-2应用举例 (1) .doc

上传人:高**** 文档编号:549334 上传时间:2024-05-28 格式:DOC 页数:5 大小:710.50KB
下载 相关 举报
天津市南开中学高二数学必修5导学案:1-2应用举例 (1) .doc_第1页
第1页 / 共5页
天津市南开中学高二数学必修5导学案:1-2应用举例 (1) .doc_第2页
第2页 / 共5页
天津市南开中学高二数学必修5导学案:1-2应用举例 (1) .doc_第3页
第3页 / 共5页
天津市南开中学高二数学必修5导学案:1-2应用举例 (1) .doc_第4页
第4页 / 共5页
天津市南开中学高二数学必修5导学案:1-2应用举例 (1) .doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、一、相关复习1. 已知三角形两边及其夹角(用 定理解决);2. 已知三角形三边问题(用 定理解决);3. 已知三角形两角和一边问题(用 定理解决);4. 已知三角形两边和其中一边的对角问题(既可用 定理,也可用 定理,可能有 解、 解和 解三种情况)二、新课导学 典型例题测量距离例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=. 求A、B两点的距离(精确到0.1m). 提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?提问2:运用该定理解题还需要那些边和角呢?分析:这是一道关于测量从一

2、个可到达的点到一个不可到达的点之间的距离的问题题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,应用正弦定理算出AB边. 新知1:基线在测量上,根据测量需要适当确定的 叫基线. 变式:隔河可以看到两个目标,但不能到达,在岸边选取相距km的C、D两点,并测得ACB75,BCD45,ADC30,ADB45,A、B、C、D在同一个平面,求两目标A、B间的距离.测量高度 学习探究新知:坡度、仰角、俯角、方位角方位角-从指北方向顺时针转到目标方向线的水平转角 ;坡度-沿余坡向上的方向与水平方向的夹角;仰角与俯角-视线与水平线的夹角当视线在水平线之上时,

3、称为仰角;当视线在水平线之下时,称为俯角. 探究:AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法. 分析:选择基线HG,使H、G、B三点共线,要求AB,先求AE在中,可测得角 ,关键求AC在中,可测得角 ,线段 ,又有例2. 如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.问题1:欲求出CD,思考在哪个三角形中研究比较适合呢?问题2:在BCD中,已知BD或BC都可求出CD,根据条件,易计算出哪条边的长?变式:为测某塔AB的高

4、度,在一幢与塔AB相距20m的楼的楼顶处测得塔顶A的仰角为30,测得塔基B的俯角为45,则塔AB的高度为多少m? 动手试试1.在中,已知,则的值是 2. 台风中心从A地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B在A的正东40千米处,B城市处于危险区内的时间为( ).A0.5小时 B1小时C1.5小时 D2小时3. 一船以每小时15km的速度向东航行,船在A处看到一个灯塔B在北偏东,行驶h后,船到达C处,看到这个灯塔在北偏东,这时船与灯塔的距离为 km4. D、C、B在地面同一直线上,DC=100米,从D、C两地测得A的仰角分别为和,则A点离地面的高AB等于( )米A100 BC50 D50三、总结提升 学习小结1. 解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.2基线的选取:测量过程中,要根据需要选取合适的基线长度,使测量具有较高的精确度.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3