收藏 分享(赏)

《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc

上传人:高**** 文档编号:531568 上传时间:2024-05-28 格式:DOC 页数:7 大小:84KB
下载 相关 举报
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第1页
第1页 / 共7页
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第2页
第2页 / 共7页
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第3页
第3页 / 共7页
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第4页
第4页 / 共7页
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第5页
第5页 / 共7页
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第6页
第6页 / 共7页
《步步高》2015届高考数学总复习(人教A版理科)配套题库:变化率与导数、导数的运算(含答案解析).doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第三章 导数及其应用第1讲 变化率与导数、导数的运算一、选择题1设函数f(x)是R上以5为周期的可导偶函数,则曲线yf(x)在x5处的切线的斜率为()A B0 C. D5解析 因为f(x)是R上的可导偶函数,所以f(x)的图象关于y轴对称,所以f(x)在x0处取得极值,即f(0)0,又f(x)的周期为5,所以f(5)0,即曲线yf(x)在x5处的切线的斜率为0,选B.答案 B 2函数f(x)是定义在(0,)上的可导函数,且满足f(x)0,xf(x)f(x)b,则必有()Aaf(b)bf(a) Bbf(a)af(b)Caf(a)f(b) Dbf(b)0),F(x),由条件知F(x)b0,即bf(

2、a)0),则f(2)的最小值为()A12 B128aC88a D16解析f(2)88a,令g(a)88a,则g(a)8,由g(a)0得a,由g(a)0得0a,a时f(2)有最小值f(2)的最小值为8816.故选D.答案D4已知函数f(x)的导函数为f(x),且满足f(x)2xf(1)ln x,则f(1)()Ae B1 C1 De解析由f(x)2xf(1)ln x,得f(x)2f(1),f(1)2f(1)1,则f(1)1.答案B5等比数列an中,a12,a84,函数f(x)x(xa1)(xa2)(xa8),则f(0)()A26 B29 C212 D215解析函数f(x)的展开式含x项的系数为a1

3、a2a8(a1a8)484212,而f(0)a1a2a8212,故选C.答案C6已知函数f(x),g(x)分别是二次函数f(x)和三次函数g(x)的导函数,它们在同一坐标系下的图象如图所示,设函数h(x)f(x)g(x),则 ()Ah(1)h(0)h(1) Bh(1)h(1)h(0)Ch(0)h(1)h(1) Dh(0)h(1)h(1)解析由图象可知f(x)x,g(x)x2,则f(x)x2m,其中m为常数,g(x)x3n,其中n为常数,则h(x)x2x3mn,得h(0)h(1)h(1)答案D二、填空题7曲线yx(3ln x1)在点(1,1)处的切线方程为_解析yx(3ln x1),y3ln x

4、1x3ln x4,ky|x14,所求切线的方程为y14(x1),即y4x3.答案y4x38若过原点作曲线yex的切线,则切点的坐标为_,切线的斜率为_解析yex,设切点的坐标为(x0,y0)则ex0,即ex0,x01.因此切点的坐标为(1,e),切线的斜率为e.答案(1,e)e9已知函数f(x)在R上满足f(x)2f(2x)x28x8,则曲线yf(x)在x1处的导数f(1)_.解析f(x)2f(2x)x28x8,x1时,f(1)2f(1)188,f(1)1,即点(1,1),在曲线yf(x)上又f(x)2f(2x)2x8,x1时,f(1)2f(1)28,f(1)2.答案210同学们经过市场调查,

5、得出了某种商品在2011年的价格y(单位:元)与时间t(单位:月)的函数关系为:y2(1t12),则10月份该商品价格上涨的速度是_元/月解析y2(1t12),y2.由导数的几何意义可知10月份该商品的价格的上涨速度应为y|t103.因此10月份该商品价格上涨的速度为3元/月答案3三、解答题11求下列函数的导数:(1)y(2x1)n,(nN*);(2)yln (x);(3)y;(4)y2xsin(2x5)解(1)yn(2x1)n1(2x1)2n(2x1)n1.(2)y.(3)y1y.(4)y2sin(2x5)4xcos(2x5)12设函数f(x)x32ax2bxa,g(x)x23x2,其中xR

6、,a、b为常数,已知曲线yf(x)与yg(x)在点(2,0)处有相同的切线l.(1)求a、b的值,并写出切线l的方程;(2)若方程f(x)g(x)mx有三个互不相同的实根0、x1、x2,其中x1x2,且对任意的xx1,x2,f(x)g(x)0m;又对任意的xx1,x2,f(x)g(x)m(x1)恒成立,特别地,取xx1时,f(x1)g(x1)mx1m成立,即0mm0,x1x22m0,故0x10,则f(x)g(x)mxx(xx1)(xx2)0;又f(x1)g(x1)mx10,所以函数在xx1,x2上的最大值为0,于是当m0时对任意的xx1,x2,f(x)g(x)m(x1)恒成立综上:m的取值范围

7、是13设函数f(x)ax,曲线yf(x)在点(2,f(2)处的切线方程为7x4y120.(1)求f(x)的解析式;(2)证明:曲线yf(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,并求此定值(1)解方程7x4y120可化为yx3,当x2时,y.又f(x)a,于是解得故f(x)x.(2)证明设P(x0,y0)为曲线上任一点,由f(x)1知,曲线在点P(x0,y0)处的切线方程为yy0(xx0),即y(xx0)令x0得,y,从而得切线与直线x0交点坐标为.令yx,得yx2x0,从而得切线与直线yx的交点坐标为(2x0,2x0)所以点P(x0,y0)处的切线与直线x0,yx所围成的三角形面积为|2x0|6.故曲线yf(x)上任一点处的切线与直线x0和直线yx所围成的三角形面积为定值,此定值为6.14设f(x)ln(x1)axb(a,bR,a,b,为常数),曲线yf(x)与直线yx在(0,0)点相切(1)求a,b的值;(2)证明:当0x2时,f(x)0时,2x11x2,故1.记h(x)f(x),则h(x).令g(x)(x6)3216(x1),则当0x2时,g(x)3(x6)22160.因此g(x)在(0,2)内是递减函数,又由g(0)0,得g(x)0,所以h(x)0.因此h(x)在(0,2)内是递减函数,又h(0)0,得h(x)0.于是当0x2时,f(x).

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3