收藏 分享(赏)

新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx

上传人:高**** 文档编号:514059 上传时间:2024-05-28 格式:DOCX 页数:6 大小:90.61KB
下载 相关 举报
新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx_第1页
第1页 / 共6页
新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx_第2页
第2页 / 共6页
新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx_第3页
第3页 / 共6页
新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx_第4页
第4页 / 共6页
新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx_第5页
第5页 / 共6页
新教材2021-2022学年高中数学人教B版选择性第一册训练:2-3-1 圆的标准方程 WORD版含解析.docx_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第二章平面解析几何2.3圆及其方程2.3.1圆的标准方程课后篇巩固提升必备知识基础练1.圆心为(-3,4),半径是2的圆的标准方程为()A.(x+3)2+(y-4)2=4B.(x-3)2+(y+4)2=4C.(x+3)2+(y-4)2=2D.(x-3)2+(y+4)2=2答案A2.方程y=9-x2表示的曲线是()A.一条射线B.一个圆C.两条射线D.半个圆答案D3.如图,圆C的部分圆弧在如图所示的网格纸上(小正方形的边长为1),图中直线与圆弧相切于一个小正方形的顶点,若圆C经过点A(2,15),则圆C的半径为()A.72B.8C.82D.10答案A解析圆C经过点(2,1)和点(2,15),故圆

2、心在直线y=8上.又过点(2,1)的圆的切线为y-1=-(x-2),故圆心在直线y-1=x-2上,即圆心在直线x-y-1=0上.由y=8,x-y-1=0可得圆心为(9,8),故圆的半径为(9-2)2+(8-1)2=72.4.已知一圆的圆心为点A(2,-3),一条直径的端点分别在x轴和y轴上,则圆的标准方程为()A.(x+2)2+(y-3)2=13B.(x-2)2+(y+3)2=13C.(x-2)2+(y+3)2=52D.(x+2)2+(y-3)2=52答案B解析如图,结合圆的性质可知,原点在圆上,圆的半径为r=(2-0)2+(-3-0)2=13.故所求圆的标准方程为(x-2)2+(y+3)2=

3、13.5.已知直线l过圆x2+(y-3)2=4的圆心,且与直线x+y+1=0垂直,则l的方程为()A.x+y-2=0B.x-y+2=0C.x+y-3=0D.x-y+3=0答案D解析圆x2+(y-3)2=4的圆心坐标为(0,3).因为直线l与直线x+y+1=0垂直,所以直线l的斜率k=1.由点斜式得直线l的方程是y-3=x-0,化简得x-y+3=0.6.将圆x2+y2=2沿x轴正方向平移2个单位后得到圆C,则圆C的标准方程为.答案(x-2)2+y2=27.当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以点C为圆心,5为半径的圆的标准方程是.答案(x+1)2+(y-2)2=5解析

4、将直线方程整理为(x+1)a-(x+y-1)=0,可知直线恒过点(-1,2),从而所求圆的标准方程为(x+1)2+(y-2)2=5.8.若圆的方程为x+k22+(y+1)2=1-34k2,则当圆的面积最大时,圆心坐标和半径分别为、.答案(0,-1)1解析圆的方程为x+k22+(y+1)2=1-34k2,r2=1-34k20,rmax=1,此时k=0.圆心为(0,-1).9.求以A(2,2),B(5,3),C(3,-1)为顶点的三角形的外接圆的标准方程.解设所求圆的标准方程为(x-a)2+(y-b)2=r2,则有(2-a)2+(2-b)2=r2,(5-a)2+(3-b)2=r2,(3-a)2+(

5、-1-b)2=r2,解得a=4,b=1,r2=5,即ABC的外接圆的标准方程为(x-4)2+(y-1)2=5.10.已知点A(-1,2)和B(3,4).求:(1)线段AB的垂直平分线l的方程;(2)以线段AB为直径的圆的标准方程.解由题意得线段AB的中点C的坐标为(1,3).(1)A(-1,2),B(3,4),直线AB的斜率kAB=4-23-(-1)=12.直线l垂直于直线AB,直线l的斜率kl=-1kAB=-2,直线l的方程为y-3=-2(x-1),即2x+y-5=0.(2)A(-1,2),B(3,4),|AB|=(3+1)2+(4-2)2=20=25,以线段AB为直径的圆的半径R=12|A

6、B|=5.又圆心为C(1,3),所求圆的标准方程为(x-1)2+(y-3)2=5.关键能力提升练11.方程(x-1)x2+y2-3=0所表示的曲线是()A.一个圆B.两个点C.一个点和一个圆D.一条直线和一个圆答案D解析(x-1)x2+y2-3=0可化为x-1=0或x2+y2=3,方程(x-1)x2+y2-3=0表示一条直线和一个圆.12.已知直线(3+2)x+(3-2)y+5-=0恒过定点P,则与圆C:(x-2)2+(y+3)2=16有公共的圆心且过点P的圆的标准方程为()A.(x-2)2+(y+3)2=36B.(x-2)2+(y+3)2=25C.(x-2)2+(y+3)2=18D.(x-2

7、)2+(y+3)2=9答案B解析由(3+2)x+(3-2)y+5-=0,得(2x+3y-1)+(3x-2y+5)=0,则2x+3y-1=0,3x-2y+5=0,解得x=-1,y=1,即P(-1,1).圆C:(x-2)2+(y+3)2=16的圆心坐标是(2,-3),|PC|=(-1-2)2+(1+3)2=5,所求圆的标准方程为(x-2)2+(y+3)2=25,故选B.13.数学家欧拉于1765年在他的著作三角形的几何学中首次提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称为三角形的欧拉线.在平面直角坐标系中作ABC,在ABC中,AB

8、=AC=4,点B(-1,3),点C(4,-2),且其“欧拉线”与圆(x-3)2+y2=r2相切,则该圆的半径r为()A.1B.2C.2D.22答案B解析在ABC中,AB=AC=4,点B(-1,3),点C(4,-2),可得BC边上的高线、垂直平分线和中线三线合一,则其“欧拉线”为ABC边BC的垂直平分线,可得BC的中点为32,12,直线BC的斜率为3+2-1-4=-1,则BC的垂直平分线的斜率为1,所以BC的垂直平分线方程为y-12=x-32,即为x-y-1=0,其“欧拉线”与圆(x-3)2+y2=r2相切,所以圆心(3,0)到“欧拉线”的距离为d=|3-0-1|2=2,即半径r=2.14.已知

9、点A(-a,0),B(a,0)(a0),点C在圆(x-2)2+(y-2)2=2上,且满足ACB=90,则a的最小值是.答案2解析设C(2+2cos,2+2sin),AC=(2+2cos+a,2+2sin),BC=(2+2cos-a,2+2sin),ACB=90,ACBC=(2+2cos)2-a2+(2+2sin)2=0,a2=10+42(sin+cos)=10+8sin+42,18.a0,a2,32,a的最小值是2.15.已知圆C与圆(x-1)2+y2=1关于直线y=-x对称,则圆C的标准方程为.答案x2+(y+1)2=1解析由已知圆(x-1)2+y2=1,设其圆心为C1,则圆C1的圆心坐标为

10、(1,0),半径长r1=1.设圆心C1(1,0)关于直线y=-x对称的点的坐标为(a,b),即圆心C的坐标为(a,b),则ba-1(-1)=-1,-a+12=b2,解得a=0,b=-1.所以圆C的标准方程为x2+(y+1)2=1.16.已知三点A(3,2),B(5,-3),C(-1,3),以点P(2,-1)为圆心作一个圆,使A,B,C三点中一点在圆外,一点在圆上,一点在圆内,求这个圆的标准方程.解要使A,B,C三点中一点在圆外,一点在圆上,一点在圆内,则圆的半径是|PA|,|PB|,|PC|的中间值.因为|PA|=10,|PB|=13,|PC|=5,所以|PA|PB|0,1),那么点M的轨迹就

11、是阿波罗尼斯圆.下面,我们来研究与此相关的一个问题.已知圆:x2+y2=1和点A-12,0,点B(1,1),M为圆O上动点,则2|MA|+|MB|的最小值为.答案10解析如图,取点K(-2,0),连接OM,MK.|OM|=1,|OA|=12,|OK|=2,|OK|OM|=|OM|OA|=2.又MOK=AOM,MOKAOM,|MK|MA|=|OM|OA|=2,|MK|=2|MA|,|MB|+2|MA|=|MB|+|MK|,|MB|+|MK|BK|,|MB|+2|MA|=|MB|+|MK|的最小值为|BK|,B(1,1),K(-2,0),|BK|=(-2-1)2+(0-1)2=10.19.已知圆C的圆心在直线x-3y=0上,且与y轴相切于点(0,1).(1)求圆C的方程;(2)若圆C与直线l:x-y+m=0交于A,B两点,分别连接圆心C与A,B两点,若CACB,求m的值.解(1)设圆心坐标为C(a,b),则a=3b,圆与y轴相切于点(0,1),则b=1,r=|a-0|,圆C的圆心坐标为(3,1),半径r=3.故圆的方程为(x-3)2+(y-1)2=9.(2)CACB,|CA|=|CB|=r,ABC为等腰直角三角形,|CA|=|CB|=r=3,圆心C到直线l的距离d=322.则d=|3-1+m|2=322,解得m=1或-5.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3