收藏 分享(赏)

小学数学应用题解题技巧9、分类思路.doc

上传人:a**** 文档编号:482500 上传时间:2025-12-08 格式:DOC 页数:2 大小:203.50KB
下载 相关 举报
小学数学应用题解题技巧9、分类思路.doc_第1页
第1页 / 共2页
小学数学应用题解题技巧9、分类思路.doc_第2页
第2页 / 共2页
亲,该文档总共2页,全部预览完了,如果喜欢就下载吧!
资源描述

1、【分类思路】把一个复杂的问题,依照某种规律,分解成若干个较简单的问题,从而使问题得到解决,这就是分类思路。这种思路在解决数图形个数问题中经常用到。例1 如图2.12,共有多少个三角形?分析(用分类思路考虑):这样的图直接去数有多少个三角形,要做到能不重复,又不遗漏,是比较困难的。怎么办?可以把图中所有三角形按大小分成几类,然后分类去数,再相加就是总数了。本题根据条件,可以分为五类(如图2.13)。例2 如图2.14,象棋棋盘上一只小卒过河后沿着最短的路走到对方“将”处,这小卒有多少种不同的走法?分析(运用分类思路分析):小卒过河后,首先到达A点,因此,题目实际上是问:从A点出发,沿最短路径有多

2、少种走法可以到达“将”处,所谓最短,是指不走回头路。因为“将”直接相通的是P点和K点,所以要求从A点到“将”处有多少种走法,就必须是求出从A到P和从A到K各有多少种走法。分类。一种走法:A到B、C、D、E、F、G都是各有一种走法。二种走法:从A到H有两种走法。三种走法:从A到M及从A到I各有三种走法。其他各类的走法:因为从A到M、到I各有3种走法,所以从A到N就有336种走法了,因为从A到I有3种走法,从A到D有1种走法,所以从A到J就有31=4种走法了;P与N、J相邻,而A到N有6种走法,A到J有4种走法,所以从A到P就有6+4=10种走法了;同理K与J、E相邻,而A到J有4种走法,到E有1种走法,所以A到K就有4+1=5种走法。再求从A到“将”处共有多少种走法就非常容易了。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1